1
|
Wang S, Zang J, Shi W, Zhou D, Jia Y, Wu J, Yan W, Zhang B, Sun L, Fan K. Simultaneously Improved Activity and Stability for Acidic Water Oxidation of IrRu Oxides by a Dual Role of Tungsten Doping. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59432-59443. [PMID: 38108306 DOI: 10.1021/acsami.3c13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Acidic oxygen evolution reaction (OER) remains a significant challenge due to the low activity and/or poor stability of the catalysts, even with state-of-the-art catalysts such as IrO2 and RuO2. Herein, we propose a strategy to enhance both the catalytic activity and stability of IrRu oxides for acidic OER by doping non-noble metal W. The W-doped IrRu3Ox (W-IrRu3Ox) undergoes a process of W leaching and reconstruction during the OER, leading to a more uniform distribution of elements, while the electronegative nature of W influences the electronic structures of Ir and Ru in W-IrRu3Ox. The dual role of W in promoting the formation of active site Ir5+ and inhibiting the concentration of soluble Ru>4+ ions results in a synergistic enhancement of both the activity and stability of acidic OER. Remarkably, W-IrRu3Ox exhibits outstanding catalytic activity for the OER in 0.5 M H2SO4, with a high stability of more than 500 h. This work presents a novel and feasible strategy for the development of efficient and stable catalysts for acid OER, shedding light on the design of advanced electrocatalysts for energy conversion and storage applications.
Collapse
Affiliation(s)
- Simeng Wang
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Frontier Science Center for Smart Materials, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Jianyang Zang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024 Hangzhou, China
| | - Weili Shi
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024 Hangzhou, China
| | - Dinghua Zhou
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Frontier Science Center for Smart Materials, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Yufei Jia
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Frontier Science Center for Smart Materials, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Jingpin Wu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Frontier Science Center for Smart Materials, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Weihong Yan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Frontier Science Center for Smart Materials, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Biaobiao Zhang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024 Hangzhou, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Frontier Science Center for Smart Materials, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024 Hangzhou, China
| | - Ke Fan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Frontier Science Center for Smart Materials, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
2
|
Di Palma V, Pianalto A, Perego M, Tallarida G, Codegoni D, Fanciulli M. Plasma-Assisted Atomic Layer Deposition of IrO 2 for Neuroelectronics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:976. [PMID: 36985871 PMCID: PMC10052997 DOI: 10.3390/nano13060976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
In vitro and in vivo stimulation and recording of neuron action potential is currently achieved with microelectrode arrays, either in planar or 3D geometries, adopting different materials and strategies. IrO2 is a conductive oxide known for its excellent biocompatibility, good adhesion on different substrates, and charge injection capabilities higher than noble metals. Atomic layer deposition (ALD) allows excellent conformal growth, which can be exploited on 3D nanoelectrode arrays. In this work, we disclose the growth of nanocrystalline rutile IrO2 at T = 150 °C adopting a new plasma-assisted ALD (PA-ALD) process. The morphological, structural, physical, chemical, and electrochemical properties of the IrO2 thin films are reported. To the best of our knowledge, the electrochemical characterization of the electrode/electrolyte interface in terms of charge injection capacity, charge storage capacity, and double-layer capacitance for IrO2 grown by PA-ALD was not reported yet. IrO2 grown on PtSi reveals a double-layer capacitance (Cdl) above 300 µF∙cm-2, and a charge injection capacity of 0.22 ± 0.01 mC∙cm-2 for an electrode of 1.0 cm2, confirming IrO2 grown by PA-ALD as an excellent material for neuroelectronic applications.
Collapse
Affiliation(s)
- Valerio Di Palma
- Department of Materials Science, University of Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Andrea Pianalto
- Department of Materials Science, University of Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Michele Perego
- CNR-IMM Unit of Agrate Brianza, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Graziella Tallarida
- CNR-IMM Unit of Agrate Brianza, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Davide Codegoni
- STMicroelectronics, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Marco Fanciulli
- Department of Materials Science, University of Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
3
|
Li H, Fei M, Troiano JL, Ma L, Yan X, Tieu P, Yuan Y, Zhang Y, Liu T, Pan X, Brudvig GW, Wang D. Selective Methane Oxidation by Heterogenized Iridium Catalysts. J Am Chem Soc 2023; 145:769-773. [PMID: 36594824 DOI: 10.1021/jacs.2c09434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxidative methane (CH4) carbonylation promises a direct route to the synthesis of value-added oxygenates such as acetic acid (CH3COOH). Here, we report a strategy to realize oxidative CH4 carbonylation through immobilized Ir complexes on an oxide support. Our immobilization approach not only enables direct CH4 activation but also allows for easy separation and reutilization of the catalyst. Furthermore, we show that a key step, methyl migration, that forms a C-C bond, is sensitive to the electrophilicity of carbonyl, which can be tuned by a gentle reduction to the Ir centers. While the as-prepared catalyst that mainly featured Ir(IV) preferred CH3COOH production, a reduced catalyst featuring predominantly Ir(III) led to a significant increase of CH3OH production at the expense of the reduced yield of CH3COOH.
Collapse
Affiliation(s)
- Haoyi Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Muchun Fei
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jennifer L Troiano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, the United States
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States.,Irvine Materials Research Institute, University of California, Irvine, California 92697, United States
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Yucheng Yuan
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yuhan Zhang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tianying Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States.,Irvine Materials Research Institute, University of California, Irvine, California 92697, United States.,Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, the United States
| | - Dunwei Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
4
|
Kim N, Lee I, Choi Y, Ryu J. Molecular design of heterogeneous electrocatalysts using tannic acid-derived metal-phenolic networks. NANOSCALE 2021; 13:20374-20386. [PMID: 34731231 DOI: 10.1039/d1nr05901g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemistry could play a critical role in the transition to a more sustainable society by enabling the carbon-neutral production and use of various chemicals as well as efficient use of renewable energy resources. A prerequisite for the practical application of various electrochemical energy conversion and storage technologies is the development of efficient and robust electrocatalysts. Recently, molecularly designed heterogeneous catalysts have drawn great attention because they combine the advantages of both heterogeneous solid and homogeneous molecular catalysts. In particular, recently emerged metal-phenolic networks (MPNs) show promise as electrocatalysts for various electrochemical reactions owing to their unique features. They can be easily synthesized under mild conditions, making them eco-friendly, form uniform and conformal thin films on various kinds of substrates, accommodate various metal ions in a single-atom manner, and have excellent charge-transfer ability. In this minireview, we summarize the development of various MPN-based electrocatalysts for diverse electrochemical reactions, such as the hydrogen evolution reaction, the oxygen evolution reaction, the CO2 reduction reaction, and the N2 reduction reaction. We believe that this article provides insight into molecularly designable heterogeneous electrocatalysts based on MPNs and guidelines for broadening the applications of MPNs as electrocatalysts.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Inhui Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yuri Choi
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Over H. Fundamental Studies of Planar Single-Crystalline Oxide Model Electrodes (RuO2, IrO2) for Acidic Water Splitting. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01973] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Herbert Over
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
| |
Collapse
|