1
|
Guo Y, Zhao S, Tang X, Yi H. Research progress on metal-organic framework compounds (MOFs) in electrocatalysis. J Environ Sci (China) 2024; 141:261-276. [PMID: 38408827 DOI: 10.1016/j.jes.2023.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 02/28/2024]
Abstract
Metal-organic frameworks (MOFs) have favorable characteristics such as large specific surface area, high porosity, structural diversity, and pore surface modification, giving them great potential for development and attractive prospects in the research area of modern materials electrocatalysis. However, unsatisfactory catalytic activity and poor electronic conductivity are the main challenges facing MOFs. This review focuses on MOF-based materials used in electrocatalysis, based on the types of catalytic reactions that have used MOF-based materials in recent years along with their applications, and also looks at some new electrocatalytic materials and their future development prospects.
Collapse
Affiliation(s)
- Yutong Guo
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaolong Tang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Honghong Yi
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
2
|
Cheng S, Wu B, Pang Y, Shen X. Highly efficient heterogeneous electro-Fenton reaction for tetracycline degradation by Fe-Ni LDH@ZIF-67 modified carbon cloth cathode: Mechanism and toxicity assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120336. [PMID: 38367502 DOI: 10.1016/j.jenvman.2024.120336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
In this work, a novel and efficient Fe-Ni LDH@ZIF-67 catalyst modified carbon cloth (CC) cathode was developed for tetracycline (TC) degradation in heterogeneous electro-Fenton (Hetero-EF) process. Compared to Fe-Ni LDH/CC (75.7%), TC degradation rate of Fe-Ni LDH@ZIF-67/CC cathode increased to 95.6% within 60 min. The synergistic effect of hetero-EF and anodic oxidation process accelerated electron transfer, the maximum H2O2 production of Fe-Ni LDH@ZIF-67/CC electrode reached 264 mg/L, improving utilization efficiency of H2O2. The cathode possessing a satisfied TC degradation performance over a wide pH (3-9). Free radical capture experiment revealed the collaboration of ·O2-, ·OH, and 1O2 play a significant role in TC degradation. The 5 cycles experiment and metal ion leaching experiment showed that the proposed Fe-Ni LDH@ZIF-67/CC has good recyclability and stability. In addition, the proposed Fe-Ni LDH@ZIF-67/CC cathode achieved satisfying performance in real water (tap water: 97.3%, lake water: 97.7%), demonstrating the possibility for practical application. TC degradation pathways were proposed by theory analysis and experimental results. The toxicity of TC intermediates was reduced by Hetero-EF degradation according to Toxicity Estimation Software Tool and Escherichia coli growth inhibition experiments. This work provides a novel modified cathode to improve removal efficiency of antibiotics in wastewater.
Collapse
Affiliation(s)
- Shuting Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Bingqing Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Yuehong Pang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| | - Xiaofang Shen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Wu Z, Tan X, Wang J, Xing Y, Huang P, Li B, Liu L. MXene Hollow Spheres Supported by a C-Co Exoskeleton Grow MWCNTs for Efficient Microwave Absorption. NANO-MICRO LETTERS 2024; 16:107. [PMID: 38305954 PMCID: PMC10837412 DOI: 10.1007/s40820-024-01326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
High-performance microwave absorption (MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow MXene spheres loaded with C-Co frameworks, was prepared to develop multiwalled carbon nanotubes (MWCNTs). A high impedance and suitable morphology were guaranteed by the C-Co exoskeleton, the attenuation ability was provided by the MWCNTs endoskeleton, and the material performance was greatly enhanced by the layered core-shell structure. When the thickness was only 2.04 mm, the effective absorption bandwidth was 5.67 GHz, and the minimum reflection loss (RLmin) was - 70.70 dB. At a thickness of 1.861 mm, the sample calcined at 700 °C had a RLmin of - 63.25 dB. All samples performed well with a reduced filler ratio of 15 wt%. This paper provides a method for making lightweight core-shell composite MA materials with magnetoelectric synergy.
Collapse
Affiliation(s)
- Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Xiuli Tan
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Jianqiao Wang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Peng Huang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Bingjue Li
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
4
|
Wu CH, Wu YF, Lee PY, Yougbaré S, Lin LY. Ligand Incorporating Sequence-dependent ZIF67 Derivatives as Active Material of Supercapacitor: Competition between Ammonia Fluoride and 2-Methylimidazole. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43180-43194. [PMID: 36103342 DOI: 10.1021/acsami.2c09787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The zeolitic imidazolate framework 67 (ZIF67) derivative is a potential active material of supercapacitors (SC), owing to high specific surface area and porosity and possible formation of cobalt compounds. A novel ZIF67 derivative is synthesized using a one-step solution process with cobalt precursor 2-methylimidazole (2-Melm) and ammonia fluoride in our previous work. Due to its facile synthesis and excellent electrocapacitive behavior, it is crucial to understand the competition between ammonia fluoride and 2-Melm on forming derivatives with cobalt ions and to create more efficient ZIF67 derivatives for charge storage. In this work, several ZIF67 derivatives are designed using a one-step solution process with 2-Melm and ammonia fluoride incorporated in different sequences. The reaction durations for a single ligand and two ligands are controlled. The largest capacity of 176.33 mAh/g corresponding to the specific capacitance of 1057.99 F/g is achieved for the ZIF67 derivative electrode prepared by reacting ammonia fluoride and a cobalt precursor for 0.5 h and then incorporating 2-Melm for another 23.5 h of reaction (NM0.5). This derivative composed of highly conductive CoF2, NiF2, Co(OH)F, and Ni(OH)F presents high specific surface area and porosity. The relevant SC presents a maximum energy density of 19.5 Wh/kg at 430 W/kg, a capacity retention of 92%, and Coulombic efficiency of 96% in 10000 cycles.
Collapse
Affiliation(s)
- Chung-Hsien Wu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yung-Fu Wu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Pin-Yan Lee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, 03 BP 7192, Ouagadougou 03, Burkina Faso
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
5
|
Jiang S, Liu F, Ji X, Yu T, Qiao Y, Yang B, Gao M. An in-plane supercapacitor obtained by facile template method with high performance Mn-Co sulfide-based oxide electrode. NANOTECHNOLOGY 2022; 33:485401. [PMID: 35901665 DOI: 10.1088/1361-6528/ac84e2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Designing in-plane supercapacitors with high electrode materials selectivity is an indispensable approach to improve electrochemical performance. In this work, a facile template method was employed to fabricate in-plane supercapacitors. This template method could select any electrochemical active materials as electrode materials of in-plane supercapacitors. Hence, a high electrochemical performance material Mn-Co LDO-2S with optimized metal-sulfur bonds proportion and abundant sulfur vacancies was employed as electrode material of symmetrical in-plane supercapacitor (SPS). SPS exhibits excellent electrochemical performance finally, and has considerable area energy density 55.0μWh cm-2with an area power density of 0.7 mW cm-2. As a result, introducing sulfur atoms and sulfur vacancies are efficient approaches to improve electrode materials' electrochemical performance, and template method that proposed in this work is a promising approach to widen selectivity of in-plane supercapacitors' electrode materials.
Collapse
Affiliation(s)
- Subin Jiang
- Key Laboratory for Magnetism and Materials of MOE, School of Materials and Energy, Lanzhou University, 730000 Lanzhou, People's Republic of China
| | - Feng Liu
- Key Laboratory for Magnetism and Materials of MOE, School of Materials and Energy, Lanzhou University, 730000 Lanzhou, People's Republic of China
| | - Xiang Ji
- Key Laboratory for Magnetism and Materials of MOE, School of Materials and Energy, Lanzhou University, 730000 Lanzhou, People's Republic of China
| | - Tengfei Yu
- Key Laboratory for Magnetism and Materials of MOE, School of Materials and Energy, Lanzhou University, 730000 Lanzhou, People's Republic of China
| | - Yi Qiao
- Key Laboratory for Magnetism and Materials of MOE, School of Materials and Energy, Lanzhou University, 730000 Lanzhou, People's Republic of China
| | - Baojuan Yang
- Key Laboratory for Magnetism and Materials of MOE, School of Materials and Energy, Lanzhou University, 730000 Lanzhou, People's Republic of China
| | - Meizhen Gao
- Key Laboratory for Magnetism and Materials of MOE, School of Materials and Energy, Lanzhou University, 730000 Lanzhou, People's Republic of China
| |
Collapse
|
6
|
Zhang W, Shahnavaz Z, Yan X, Huang X, Wu S, Chen H, Pan J, Li T, Wang J. One-Step Solvothermal Synthesis of Raspberry-like NiCo-MOF for High-Performance Flexible Supercapacitors for a Wide Operation Temperature Range. Inorg Chem 2022; 61:15287-15301. [PMID: 36083865 DOI: 10.1021/acs.inorgchem.2c02916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As a novel electrode material for energy storage, metal-organic frameworks (MOFs) emerge with plenty of merits and certain drawbacks in the field of supercapacitors. Nevertheless, most MOFs synthesized for the moment are faced with dimension/distribution issues and dissatisfactory electrical conductivity. Hence, in this paper, NiCo-MOF was successfully fabricated by applying a one-step solvothermal method, from which NiCo-MOF-3 presents an optimal electrochemical performance compared to other NiCo-MOFs and Ni/Co-MOF. Owing to its unique three-dimensional spherical raspberry structure, NiCo-MOF-3 demonstrates an available internal resistance and electron transfer resistance to ameliorate electrical energy storage, exhibiting an excellent mass specific capacitance of 639.8 F/g at 1 A/g. Then, a flexible quasi-solid-state asymmetric supercapacitor was assembled with NiCo-MOF-3 as the positive electrode. The introduction of K3[Fe(CN)6] and glycerin in the gel electrolyte facilitates the maximum energy density of 66.3 Wh/kg of the device, with a corresponding power density reaching its maximum of 12,047 W/kg. The device's apparent energy density, excellent flexibility, and temperature resistance reveal that our method to prepare supercapacitor electrode material possesses more advantages than those in the former literature.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Zohreh Shahnavaz
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Xuehua Yan
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China.,Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Xinpeng Huang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Sutang Wu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Hao Chen
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Jianmei Pan
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Tie Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu, P. R. China
| | - Jiapeng Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| |
Collapse
|
7
|
Shokry A, Elshaer A, El Nady J, Ebrahim S, Khalil M. High energy density and specific capacity for supercapacitor based on electrochemical synthesized polyindole. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Supercapacitor based on polymeric binary composite of polythiophene and single-walled carbon nanotubes. Sci Rep 2022; 12:11278. [PMID: 35789198 PMCID: PMC9253121 DOI: 10.1038/s41598-022-15477-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this work is to fabricate supercapacitor electrode based on poly (3-hexyl-thiophene-2, 5-diyl) (P3HT) and single-walled carbon nanotubes (SWCNTs) nanocomposites with different ratios onto a graphite sheet as a substrate with a wide voltage window in nonaqueous electrolyte. Structural, morphological and electrochemical properties of the prepared nanocomposites of P3HT/SWCNTs were studied and discussed. The electrochemical properties included cyclic voltammetry (CV), galvanostatic charging-discharging (GCD), and electrochemical impedance spectroscopy (EIS) were investigated. The obtained results indicated that P3HT/SWCNTs nanocomposite possesses higher specific capacitance than that present in its individual component. The high electrochemical performance of the nanocomposite was due to formation of microporous structure which facilitates ions diffusion and electrolyte penetration in these pores. The morphological micrographs of the purified SWCNTs had buckypaper structure while the photomicrographs of P3HT/SWCNTs showed that SWCNTs appear behind and front of the P3HT nanospheres. The specific capacitance of 50% SWCNTs at 0.5 Ag−1 was found to be 245.8 Fg−1 compared with that of pure P3HT of 160.5 Fg−1.
Collapse
|
9
|
Chen TY, Kuo TR, Yougbaré S, Lin LY, Xiao CY. Novel direct growth of ZIF-67 derived Co 3O 4 and N-doped carbon composites on carbon cloth as supercapacitor electrodes. J Colloid Interface Sci 2022; 608:493-503. [PMID: 34626991 DOI: 10.1016/j.jcis.2021.09.198] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Zeolitic imidazolate framework-67 (ZIF67) derivatives are considered as promising active materials for energy storage owing to the possible formation of cobalt oxide and N-doped graphite. Cobalt oxide has multiple redox states for generating redox reactions for charge storage, while N-doped graphite can provide high electrical conductivity for charge transfer. In this study, it is the first time to synthesize binder-free electrodes composed of cobalt oxide and N-doped graphite derived from ZIF67 on carbon cloth (CC) for supercapacitor (SC). Successive oxidation and carbonization along with additional coverage of ZIF67 derivatives are applied to synthesize ZIF67 derivatives composed of cobalt oxide, N-doped graphite and cobalt oxide/N-doped graphite composites with different layer compositions. The highest specific capacitance (CF) of 90.0F/g at 20 mV/s is obtained for the oxidized ZIF67/carbonized ZIF67/carbon cloth (O67/C67/CC) electrode, due to the large surface area and high electrical conductivity benefitted from preferable morphology and growing sequence of Co3O4 and N-doped graphite. The symmetric SC composed of O67/C67/CC electrodes shows the maximum energy density of 2.53 Wh/kg at the power density of 50 W/kg. Cycling stability with CF retention of 70% and Coulombic efficiency of 65% after 6000 times repeatedly charge/discharge process is also obtained for this symmetric SC.
Collapse
Affiliation(s)
- Tzu-Yang Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Tsung-Rong Kuo
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, 03 B.P 7192, Ouagadougou 03, Burkina Faso
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.
| | - Cheng-Yu Xiao
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
10
|
Facile synthesis of NiCo2O4 nanostructure with enhanced electrochemical performance for supercapacitor application. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Chen L, Deng W, Chen Z, Wang X. Hetero-architectured core-shell NiMoO 4@Ni 9S 8/MoS 2 nanorods enabling high-performance supercapacitors. JOURNAL OF MATERIALS RESEARCH 2021; 37:284-293. [PMID: 35153374 PMCID: PMC8810477 DOI: 10.1557/s43578-021-00318-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/21/2021] [Indexed: 06/14/2023]
Abstract
ABSTRACT An effective technique for improving electrochemical efficiency is to rationally design hierarchical nanostructures that completely optimize the advantages of single components and establish an interfacial effect between structures. In this study, core-shell NiMoO4@Ni9S8/MoS2 hetero-structured nanorods are prepared via a facile hydrothermal process followed by a direct sulfurization. The resulting hierarchical architecture with outer Ni9S8/MoS2 nanoflakes shell on the inner NiMoO4 core offers plentiful active sites and ample charge transfer pathways in continuous heterointerfaces. Ascribing to the porous core-shell configuration and synergistic effect of bimetal sulfides, the obtained NiMoO4@Ni9S8/MoS2 as electrode material presents an unsurpassed specific capacity of 373.4 F g-1 at 10 A g-1 and remarkable cycling performance in the 6 M KOH electrolyte. This work delivers a rational method for designing highly efficient electrodes for supercapacitors, enlightening the road of exploring low-cost materials in the energy storage domain. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1557/s43578-021-00318-y.
Collapse
Affiliation(s)
- Lu Chen
- Department of Chemical and Materials Engineering, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, QC H3G 1M8 Canada
| | - Wenjing Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211 – 116 Street NW., Edmonton, AB T6G 1H9 Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, QC H3G 1M8 Canada
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, QC H3G 1M8 Canada
- Department of Chemical and Materials Engineering, University of Alberta, 9211 – 116 Street NW., Edmonton, AB T6G 1H9 Canada
| |
Collapse
|