1
|
Zhong W, Yue J, Zhang R, Huang H, Huang H, Shen Z, Jiang L, Xu M, Xia Q, Cao Y. Screening of Transition Metal Supported on Black Phosphorus as Electrocatalysts for CO 2 Reduction. Inorg Chem 2024; 63:1035-1045. [PMID: 38171367 DOI: 10.1021/acs.inorgchem.3c03320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The electrocatalytic CO2 reduction (CO2RR) is an effective and economical strategy to eliminate CO2 through conversion into value-added chemicals and fuels. However, exploring and screening suitable 2D material-based single-atom catalysts (SACs) for CO2 reduction are still a great challenge. In this study, 27 (3d, 4d, and 5d, except Tc and Hg) transition metal (TM) atom-doped black phosphorus (TM@BP) electrocatalysts were systematically investigated for CO2RR by density functional theory calculations. According to the stability of SACs and their effectiveness in activating the CO2 molecule, three promising catalysts, Zr@BP, Nb@BP, and Ru@BP, were successfully screened out, exhibiting outstanding catalytic activity for the production of carbon monoxide (CO), methyl alcohol (CH3OH), and methane (CH4) with limiting potentials of -0.79, -0.49, and -0.60 V, respectively. A catalytic relationship between the d-band centers of SACs and the limiting potential of CO2RR was used to estimate the catalytic activity of catalysts. Furthermore, Nb@BP has high selectivity for CO2RR to CH3OH compared to H2 formation, while the hydrogen evolution reaction significantly impacts the synthesis of CO and CH4 on Zr@BP and Ru@BP. Nitrogen atom doping in BP is beneficial for enhancing the selectivity of CO2RR, but it is detrimental to the activity of CO2RR. This study offers theoretical guidance for synthesizing highly efficient CO2RR electrocatalysts and further enhances structural modulation methods for layered 2D materials.
Collapse
Affiliation(s)
- Weichan Zhong
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Jingxiu Yue
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Rongxin Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Hongjie Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Lingchang Jiang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Minhong Xu
- Department of Materials Engineering, Huzhou University, Huzhou, Zhejiang 313000, P. R. China
| | - Qineng Xia
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Yongyong Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| |
Collapse
|
2
|
Meng Y, Huang H, Zhang Y, Cao Y, Lu H, Li X. Recent advances in the theoretical studies on the electrocatalytic CO2 reduction based on single and double atoms. Front Chem 2023; 11:1172146. [PMID: 37056353 PMCID: PMC10086683 DOI: 10.3389/fchem.2023.1172146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Excess of carbon dioxide (CO2) in the atmosphere poses a significant threat to the global climate. Therefore, the electrocatalytic carbon dioxide reduction reaction (CO2RR) is important to reduce the burden on the environment and provide possibilities for developing new energy sources. However, highly active and selective catalysts are needed to effectively catalyze product synthesis with high adhesion value. Single-atom catalysts (SACs) and double-atom catalysts (DACs) have attracted much attention in the field of electrocatalysis due to their high activity, strong selectivity, and high atomic utilization. This review summarized the research progress of electrocatalytic CO2RR related to different types of SACs and DACs. The emphasis was laid on the catalytic reaction mechanism of SACs and DACs using the theoretical calculation method. Furthermore, the influences of solvation and electrode potential were studied to simulate the real electrochemical environment to bridge the gap between experiments and computations. Finally, the current challenges and future development prospects were summarized and prospected for CO2RR to lay the foundation for the theoretical research of SACs and DACs in other aspects.
Collapse
Affiliation(s)
- Yuxiao Meng
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Hongjie Huang
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - You Zhang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yongyong Cao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| | - Hanfeng Lu
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| |
Collapse
|
3
|
Sun Y, Jing H, Wu Z, Yu J, Gao H, Zhang Y, He G, Lei W, Hao Q. High Efficient Catalyst of N‐doped Carbon Modified Copper Containing Rich Cu−N−C Active Sites for Electrocatalytic CO
2
Reduction. ChemistrySelect 2022. [DOI: 10.1002/slct.202200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yingxin Sun
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| | - Haiyan Jing
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| | - Zongdeng Wu
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| | - Jia Yu
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| | - Haiwen Gao
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| | - Yuehua Zhang
- College of Chemistry and Chemical Engineering Nantong University Nantong 226007 Jiangsu China
| | - Guangyu He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Changzhou University Changzhou 213164 Jiangsu China
| | - Wu Lei
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| | - Qingli Hao
- Key Laboratory for Soft Chemistry and Functional Materials School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 Jiangsu China
| |
Collapse
|