1
|
Yan X, Cheng S, Xiao Y, Wu S, Mu H, Shi Z, Guo L, Ai F, Zheng X. Based on Fe and Ni prepared organic colloidal materials as efficient oxide nanozymes for chemiluminescence detection of GSH and Hg(II) ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124696. [PMID: 38950475 DOI: 10.1016/j.saa.2024.124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Metal-organic gels (MOGs) are a type of metal-organic colloid material with a large specific surface area, loose porous structure, and open metal active sites. In this work, FeNi-MOGs were synthesized by the simple one-step static method, using Fe(III) and Ni(II) as the central metal ions and terephthalic acid as the organic ligand. The prepared FeNi-MOGs could effectively catalyze the chemiluminescence of luminol without the involvement of H2O2, which exhibited good catalytic activity. Then, the multifunctional detected platform was constructed for the detection of GSH and Hg2+, based on the antioxidant capacity of GSH, and the strong affinity between mercury ion (Hg2+) and GSH which inactivated the antioxidant capacity of GSH. The experimental limits of detection (LOD) for GSH and Hg2+ were 76 nM and 210 nM, and the detection ranges were 2-100 μM and 8-4000 μM, respectively. The as-proposed sensor had good performance in both detection limit and detection range of GSH and Hg2+, which fully met the needs of daily life. Surprisingly, the sensor had low detection limits and an extremely wide detection range for Hg2+, spanning five orders of magnitude. Furthermore, the detection of mercury ions in actual lake water and GSH in human serum showed good results, with recovery rates ranging from 90.10 % to 105.37 %, which proved that the method was accurate and reliable. The as-proposed sensor had great potential as the platform for GSH and Hg2+ detection applications.
Collapse
Affiliation(s)
- Xiluan Yan
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Shiyun Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Yipi Xiao
- Nanchang Hongdu Hospital of TCM, Nanchang 330013, PR China
| | - Shuangbin Wu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Hongyi Mu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Zhiying Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Liang Guo
- Sino German Joint Research Institute, Nanchang University, Nanchang 330096, PR China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, PR China
| | - Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
2
|
Wang Y, Li Y, Chai J, Rui Y, Jiang L, Tang B. Constructing novel hydrated metal molten salt with high self-healing as the anode material for lithium-ion batteries. Dalton Trans 2024; 53:9081-9091. [PMID: 38738658 DOI: 10.1039/d4dt00696h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Lithium-ion batteries (LIBs) are greatly limited in their practical application because of their poor cycle performance, low conductivity and volume expansion. Herein, molten salts (MSs) FeCl3·6H2O-NMP with low temperature via simple preparation are used as the anode material of LIBs for the first time to break through the bottleneck of LIBs. The good fluidity and high self-healing of FeCl3·6H2O-NMP effectively avoid the collapse and breakage of the structure. Based on this feature, the initial discharge specific capacity reached 770.28 mA h g-1, which was more than twice that of the commercial graphite anode. After 200 cycles at a current density of 100 mA g-1, the specific capacity did not decrease rather it was found to be higher than the initial discharge specific capacity, reaching 867.24 mA h g-1. Besides, the good conductivity of MSs provides convenience for the removal and intercalation of Li+. The active H sites that can combine with lithium ions form LiH and provide capacity for LIBs. Density functional theory (DFT) calculation also provided theoretical proof for the mechanism of LIBs.
Collapse
Affiliation(s)
- Yiting Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Yifei Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Jiali Chai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Lei Jiang
- Department of Chemical Engineering, KU Leuven, Leuven 3001, Belgium.
| | - Bohejin Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| |
Collapse
|
3
|
Zhang B, Zhang J, Zhang Y, Zuo Q, Zheng H. Ce(IV)-Based Metal-Organic Gel for Ultrafast Removal of Trace Arsenate from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37515556 DOI: 10.1021/acs.langmuir.3c01079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
As a potential replacement for metal-organic frameworks (MOFs), constructing metal-organic gels (MOGs) is an appealing but challenging topic since MOGs are a kind of shapeable MOF gels. Also, the rapid adsorption of trace heavy metal ions in aqueous media remains a serious challenge. Herein, a simple strategy for the synthesis of Ce(IV)-based metal-organic gel (Ce-MOG) was first developed for the rapid adsorption of trace As(V). The (NH4)2Ce(NO3)6 obtains hydroxide bridges after adding apposite NaOH, leading to [Ce6O4(OH)4]12+ clustering and inducing fast and excessive nucleation rates, which also leads to coordination disturbance of MOF nanocrystals to obtain Ce-MOG. The Ce-OH groups are the key to gel formation through hydrogen bonding and are the active site for the ultrafast adsorption of As(V). As expected, the resultant Ce-MOG has an excellent adsorption rate, making it possible to effectively decontaminate 500 ppb of As(V) to below the World Health Organization (WHO) recommended threshold for drinking water (10 ppb) within 1 min. It achieves equilibrium adsorption in 10 min, and the final arsenate-removing efficiency reaches 99.8%. For Ce-MOF, the effluent concentration of As(V) is higher than the drinking water standard, while equilibrium adsorption takes 60 min. The initial adsorption rate of Ce-MOG, h(k2qe2) is calculated and indicated to be 67.67 mg g-1 min-1, about 19.96 times that of Ce-MOF (3.39 mg g-1 min-1). As such, the excellent As(V) decontamination rate, selectivity, and reusability of Ce-MOG indicate its great potential for practical drinking water purification.
Collapse
Affiliation(s)
- Baichao Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Jiejing Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yu Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Qi Zuo
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Hong Zheng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
4
|
Liu G, Li S, Shi C, Huo M, Lin Y. Progress in Research and Application of Metal-Organic Gels: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1178. [PMID: 37049272 PMCID: PMC10096755 DOI: 10.3390/nano13071178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In recent years, metal-organic gels (MOGs) have attracted much attention due to their hierarchical porous structure, large specific surface area, and good surface modifiability. Compared with MOFs, the synthesis conditions of MOGs are gentler and more stable. At present, MOGs are widely used in the fields of catalysis, adsorption, energy storage, electrochromic devices, sensing, analysis, and detection. In this paper, literature metrology and knowledge graph visualization analysis are adopted to analyze and summarize the literature data in the field of MOGs. The visualization maps of the temporal distribution, spatial distribution, authors and institutions' distribution, influence of highly cited literature and journals, keyword clustering, and research trends are helpful to clearly grasp the content and development trend of MOG materials research, point out the future research direction for scholars, and promote the practical application of MOGs. At the same time, the paper reviews the research and application progress of MOGs in recent years by combining keyword clustering, time lines, and emergence maps, and looks forward to their challenges, future development trend, and application prospects.
Collapse
Affiliation(s)
- Gen Liu
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Siwen Li
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chunyan Shi
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yingzi Lin
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
5
|
Fan X, Liu S, Jia Z, Koh JJ, Yeo JCC, Wang CG, Surat'man NE, Loh XJ, Le Bideau J, He C, Li Z, Loh TP. Ionogels: recent advances in design, material properties and emerging biomedical applications. Chem Soc Rev 2023; 52:2497-2527. [PMID: 36928878 DOI: 10.1039/d2cs00652a] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Ionic liquid (IL)-based gels (ionogels) have received considerable attention due to their unique advantages in ionic conductivity and their biphasic liquid-solid phase property. In ionogels, the negligibly volatile ionic liquid is retained in the interconnected 3D pore structure. On the basis of these physical features as well as the chemical properties of well-chosen ILs, there is emerging interest in the anti-bacterial and biocompatibility aspects. In this review, the recent achievements of ionogels for biomedical applications are summarized and discussed. Following a brief introduction of the various types of ILs and their key physicochemical and biological properties, the design strategies and fabrication methods of ionogels are presented by means of different confining networks. These sophisticated ionogels with diverse functions, aimed at biomedical applications, are further classified into several active domains, including wearable strain sensors, therapeutic delivery systems, wound healing and biochemical detections. Finally, the challenges and possible strategies for the design of future ionogels by integrating materials science with a biological interface are proposed.
Collapse
Affiliation(s)
- Xiaotong Fan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Siqi Liu
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - J Justin Koh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Chen-Gang Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Nayli Erdeanna Surat'man
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jean Le Bideau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France.
| | - Chaobin He
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore. .,Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
6
|
Xia S, Sun J, Sun W. Bimetallic metal-organic gel for effective removal of chlortetracycline hydrochloride from aqueous solution:Adsorption isotherm, kinetic and mechanism studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Fang Y, Ren G, Ma Y, Wang C, Li M, Pang X, Pan Q, Li J. Adsorption and reutilization of Pb(II) based on acid-resistant metal-organic gel. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Wang H, Zhang M, Tan C, Lai A, Pan Q, Zhang L, Zhong X, Zheng F, Huang Y, Li Q. Interfacial engineering enables Bi2S3@N-doped carbon nanospheres towards high performance anode for lithium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Liang F, Wu D, Jiang L, Zhang Z, Zhang W, Rui Y, Tang B, Liu F. Layered Niobium Oxide Hydrate Anode with Excellent Performance for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51057-51065. [PMID: 34672534 DOI: 10.1021/acsami.1c15763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Benefiting from the advantages of cost-effectiveness and sustainability, lithium-ion batteries (LIBs) are recognized as a next-generation energy technology with great development potential. Herein, niobium oxide hydrate (H3ONb3O8) synthesized by a facile and inexpensive solvothermal method is proposed as the anode of LIBs. It is a layered two-dimensional material composed of negatively charged two-dimensional lamellae and positively charged interlayer hydronium ions. The former consist of NbO6 octahedral units connected by bridging oxygen. Because of the mutual effect of hydronium ions and niobium oxide quantum dots, niobium oxide hydrate exhibits excellent electrochemical activity when used as an anode material. This compound is first applied to lithium-ion batteries, obtaining a high specific capacity (1232 mAh g-1) at 100 mA g-1 and maintaining an outstanding performance after 200 cycles. Therefore, this work not only proposes a simple preparation method of niobium oxide hydrate but also expands the variety of high-performance anode materials.
Collapse
Affiliation(s)
- Fenghao Liang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Daoning Wu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Lei Jiang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Zhe Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Bohejin Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Fengjiao Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| |
Collapse
|
10
|
Li Q, Du J, Chai J, Han N, Zhang W, Tang B. Vanadium Metaphosphate V(PO
3
)
3
Derived from V‐MOF as a Novel Anode for Lithium‐Ion Batteries. ChemistrySelect 2021. [DOI: 10.1002/slct.202102311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qingmeng Li
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 PR China
| | - Jiakai Du
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 PR China
| | - Jiali Chai
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 PR China
| | - Ning Han
- Department of Materials Engineering KU Leuven Leuven 3001 Belgium
| | - Wei Zhang
- Department of Materials Engineering KU Leuven Leuven 3001 Belgium
| | - Bohejin Tang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 PR China
| |
Collapse
|
11
|
Jiang L, Zhang Z, Liang F, Wu D, Wang K, Tang B, Rui Y, Liu F. Superior lithium-storage properties derived from a g-C 3N 4-embedded honeycomb-shaped meso@mesoporous carbon nanofiber anode loaded with Fe 2O 3 for Li-ion batteries. Dalton Trans 2021; 50:9775-9786. [PMID: 34180480 DOI: 10.1039/d1dt01178b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this work, a honeycomb-shaped meso@mesoporous carbon nanofiber material incorporating homogeneously dispersed ultra-fine Fe2O3 nanoparticles (denoted as Fe2O3@g-C3N4@H-MMCN) is synthesised through a pyrolysis process. The honeycomb-shaped configuration of the meso@mesoporous carbon nanofiber material derived from a natural bio-carbon source (crab shell) acts as a support for an anode material for Li-ion batteries. Graphitic carbon nitride (g-C3N4) is produced via the one-step pyrolysis of urea at high temperature under an N2 atmosphere without the assistance of additives. The resulting favorable electrochemical performance, with superior rate capabilities (1067 mA h g-1 at 1000 mA g-1), a remarkable specific capacity (1510 mA h g-1 at 100 mA g-1), and steady cycling performance (782.9 mA h g-1 after 500 cycles at 2000 mA g-1), benefitted from the advantages of both the host material and the Fe2O3 nanoparticles, which play an important role due to their ultra-fine particle size of 5 nm. The excellent cycle life and high capacity demonstrate that this strategy of strong synergistic effects represents a new pathway for pursuing high-electrochemical-performance materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Lei Jiang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Zhe Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Fenghao Liang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Daoning Wu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Ke Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Bohejin Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Fengjiao Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| |
Collapse
|