1
|
Abbas KA, Abdelwahab A, Abdel-Samad HS, Abd-El Rehim SS, Hassan HH. Novel preparation of metal-free carbon xerogels under acidic conditions and their performance as high-energy density supercapacitor electrodes. NANOSCALE ADVANCES 2023; 5:5499-5512. [PMID: 37822908 PMCID: PMC10563850 DOI: 10.1039/d3na00517h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023]
Abstract
The development of metal-free supercapacitor electrodes with a high energy density is a crucial requirement in the global shift towards sustainable energy sources and industrial pursuit of an optimal supercapacitor. Indeed, from an industrial perspective, time assumes a paramount role in the manufacturing process. A majority of synthesis methods employed for the fabrication of carbon xerogel-based supercapacitor electrodes are characterized by prolonged durations, and result in relatively poor energy and power density. These limitations hinder their practical applications and impede their widespread manufacturing capabilities. In this study, carbon xerogel-based supercapacitor electrodes were made in the shortest time ever reported by making the condition highly acidic with hydrochloric acid (HCl). Furthermore, the investigation of the effect of HCl concentrations (0.1 M, 0.05 M, and 0.01 M) on the morphology and electrochemical behavior of the prepared samples is reported herein. Interestingly, the highest concentration of HCl developed the highest BET surface area, 1032 m2 g-1, which enforced the capacitive behavior to deliver a specific capacitance of 402 F g-1 at 1 A g-1 and a capacitance retention of 80.8% at a current density of 2 A g-1 in an electrolyte containing 0.5 M H2SO4 + 0.5 M Na2SO4. Moreover, an impressive energy density of 45 W h kg-1 at a power density of 18.2 kW kg-1 was achieved. Interestingly, as the HCl concentration increased, the equivalent series resistance decreased to 3.9 W with carbon xerogel 0.1 M HCl (CX0.1). The superior performance of CX0.1 may be attributed to its enlarged BET surface area, pore volume, pore diameter, and smaller particle size. This work provides a facile approach for the large-scale production of metal-free carbon supercapacitor electrodes with improved performance and stability and opens novel horizons to explore the impacts of many types of catalysts during the carbon xerogel preparation.
Collapse
Affiliation(s)
- Karim Ahmed Abbas
- Chemistry Department, Faculty of Science, Ain-Shams University Abassia Cairo 11566 Egypt
- Faculty of Science, Galala University Sokhna Suez 43511 Egypt
| | - Abdalla Abdelwahab
- Faculty of Science, Galala University Sokhna Suez 43511 Egypt
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University 62511 Beni-Suef Egypt
| | - Hesham S Abdel-Samad
- Chemistry Department, Faculty of Science, Ain-Shams University Abassia Cairo 11566 Egypt
| | | | - Hamdy H Hassan
- Chemistry Department, Faculty of Science, Ain-Shams University Abassia Cairo 11566 Egypt
- Faculty of Science, Galala University Sokhna Suez 43511 Egypt
| |
Collapse
|
2
|
Hu Z, He T, Li W, Huang J, Zhang A, Wang S, Zhou W, Xu J. Controllable 3D Flower-Like Ag-CF Electrodes as Flexible Marine Electric Field Sensors with High Stability. Inorg Chem 2023; 62:3541-3554. [PMID: 36791307 DOI: 10.1021/acs.inorgchem.2c04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Construction of three-dimensional (3D) flower-like nanostructures with controlled morphologies has emerged as an attractive tool by scientists in the marine electric field sensor research field due to their peculiar structural features. Herein, novel 3D flower-like Ag-CF capacitive composite electrodes have been created by an eco-friendly water-bath strategy via AgNO3 as a sliver source and subsequently compounded with carbon fibers (CFs) pretreated by thermal oxidation. A series of electrode samples with various morphologies obtained by modulating different reaction times and temperatures bring about the dominant formation mechanism of these nanostructures and the influence behavior on the CF electrode in detail. Especially, the 3D flower-like Ag-CF electrode shows a large surface area acquired under the conditions of 80 °C and 15 min, which can provide more electroactive sites in electrochemical analysis and exhibit a maximum areal specific capacitance of 619.75 mF·cm-2 at a scanning speed of 10 mV·s-1. This is mainly due to the synergistic behavior of the unique 3D flower-like morphology and the large specific surface area of CFs. Furthermore, a cylinder-shaped Ag-CF sensor is designed, which delivers a superior potential difference of 33.08 μV, a potential difference drift of 18.62 μV/24 h for 30 days, and a self-noise of 0.92 nV/rt (Hz)@1 Hz. In this work, the intriguing synthesis strategy can be a promising facile approach to manufacture the controllable 3D flower-like Ag-CF electrode for electric field sensor applications.
Collapse
Affiliation(s)
- Zhihui Hu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Tiancheng He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Wenhao Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Jinping Huang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Aiqi Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Shiyu Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Wei Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Jianmei Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
| |
Collapse
|
3
|
Zhou J, Liu X, Shao Z, Shen T, Yu H, Yang X, You H, Chen D, Liu C, Liu Y. Enhanced Thermoelectric Properties of Coated Vanadium Oxynitride Nanoparticles/PEDOT:PSS Hybrid Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9953-9961. [PMID: 36779867 DOI: 10.1021/acsami.2c19809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Thermoelectric (TE) materials transform thermal energy into electricity, which can play an important role for global sustainability. Conducting polymers are suitable for the preparation of flexible TE materials because of their low-cost, lightweight, flexible, and easily synthesized properties. Here, we fabricate organic-inorganic hybrids by combining vanadium oxynitride nanoparticles coated with nitrogen-doped carbon (NC@VNO) and poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonate) (PEDOT:PSS). We find that the electrical conductivity, Seebeck coefficient, and power factor of the NC@VNO/PEDOT:PSS film can be enhanced up to 4158 S/cm, 45.8 μV/K, and 873 μW/mK2 at 380 K, respectively. The large enhancement of the power factor may be due to the facilitation of the interfacial charge transport tunnel between the NC@VNO nanoparticles and PEDOT:PSS. The improvement of the Seebeck coefficient may be due to the energy filter effect as induced by interfacial contact and internal electric field between the NC@VNO nanoparticles and PEDOT:PSS. Our measurement suggests that the high binding energy of pyrrolic-N enhances the Seebeck coefficient, and the high binding energy of oxide-N increases electrical conductivity.
Collapse
Affiliation(s)
- Jinhua Zhou
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Xinru Liu
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Zhenguang Shao
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Tong Shen
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Hailin Yu
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Xifeng Yang
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Haifan You
- The Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Dunjun Chen
- The Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Changjiang Liu
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| | - Yushen Liu
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| |
Collapse
|
4
|
N'Diaye J, Elshazly M, Lian K. Unraveling Synergistic Redox Interactions in Tetraphenylporphyrin-Polyluminol-Carbon Nanotube Composite for Capacitive Charge Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28359-28369. [PMID: 35675200 DOI: 10.1021/acsami.2c04882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic redox-active materials, combined with high-surface-area carbonaceous substrates, form sustainable and low-cost composites with greatly enhanced electrochemical charge storage capacities. The electrochemical capacitive behavior of a composite electrode containing tetraphenylporphyrin sulfonate (TPPS), Chemically polymerized luminol (CpLum), and carbon nanotubes (TPPS-CpLum-CNT) was studied and compared with individual TPPS-CNT and CpLum-CNT composites. The dual-layer TPPS-CpLum had a combined contribution to the electrochemical charge storage, which led to an increased volumetric capacitance over the bare CNT and individual TPPS-CNT and CpLum-CNT composites. The synergistic interactions in the composite enabled faster charge storage kinetics and great stability. Spectroscopic analyses revealed that TPPS and CpLum interact electronically through noncovalent π-π and van der Waals bonds, which facilitates the transfer of electrons during charge and discharge. The synergy in charge storage was confirmed by density functional theory computational analysis, which suggested favorable physisorption and interfacial electronic interactions for TPPS adsorbed to a CpLum-carbon substrate. The combined insights from experimental and computational characterizations show that superimposing redox-active organic layers can be an effective and sustainable approach to design and engineer the surface of carbonaceous materials for capacitive charge storage.
Collapse
Affiliation(s)
- Jeanne N'Diaye
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada
| | - Mohamed Elshazly
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Keryn Lian
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|