1
|
Wang Q, Wang H, Hu X, Fan Z, Wang Y, Ma P, Niu J, Wang J. Synthesis and Structure of a Copper-Based Functional Network for Efficient Organic Dye Adsorption. Inorg Chem 2022; 61:19764-19772. [PMID: 36442072 DOI: 10.1021/acs.inorgchem.2c02817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the work, by incorporating polyoxometalates (POMs) into a copper(II)-based network, a novel three-dimensional (3D) porous framework, [Cu17Cl3(trz)12]H3[GaW12O40]·9H2O (Cu-GaW-TRZ), was successfully prepared and explored for the adsorption of dyes. The adsorption capacity of Cu-GaW-TRZ was calculated as 13.11 mg/g, and the dye adsorption rate equaled 96.2% for the adsorption of methylene blue (MB). Furthermore, this recyclable adsorbent is stable enough without obvious loss of adsorption capacity for at least five runs. Meanwhile, the structure of the macropores is suitable for the entry of large molecular dyes, and [GaW12O40]5- also can achieve efficient adsorption for cationic dyes. The results displayed a pseudo-second-order kinetic model and were well matched for MB adsorption onto Cu-GaW-TRZ. The free energy, entropy, and enthalpy of the thermodynamic parameters for the adsorption of MB were calculated, which revealed that the adsorption process was befitting for the adsorption of MB.
Collapse
Affiliation(s)
- Quanzhong Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| | - Hui Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| | - Xin Hu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| | - Zhiming Fan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| | - Yingyue Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan475004, P. R. China
| |
Collapse
|
2
|
Pal S, Jana S, Kumar A, Rajpal, Prakash R. Enhanced OER properties from nanocomposites of Co3O4 and MOF derived N/S/Zn-doped porous carbon. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Composite nanoarchitectonics of ZIF-67 derived CoSe2/rGO with superior charge transfer for oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Dai FF, Xue YX, Gao DL, Liu YX, Chen JH, Lin QJ, Lin WW, Yang Q. Facile fabrication of self-supporting porous CuMoO 4@Co 3O 4 nanosheets as a bifunctional electrocatalyst for efficient overall water splitting. Dalton Trans 2022; 51:12736-12745. [PMID: 35946555 DOI: 10.1039/d2dt01613c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Research shows that redox complementarity and synergism among the ingredients of heterogeneous catalysts can enhance the performance of the catalyst. In this research, a porous CuMoO4@Co3O4 nanosheet electrocatalyst is prepared, which is uniformly decorated on nickel foam (NF) by hydrothermal reactions and the impregnation method. The CuMoO4@Co3O4 is an efficient bifunctional catalyst with prominent electrocatalytic activity and durability. It requires overpotentials of only 54 and 251 mV to obtain current densities of 10 and 50 mA cm-2 for the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction (OER) in 1.0 mol L-1 KOH, corresponding to Tafel slope values of 98.8 and 87.4 mV dec-1, respectively. Furthermore, the CuMoO4@Co3O4 shows excellent stability of 120 h chronopotentiometry at a current density of 100 mA cm-2 for the HER/OER. Notably, an alkaline electrolyzer (with CuMoO4@Co3O4 as the HER and OER electrodes) can deliver a current density of 10 mA cm-2 at a low voltage of 1.51 V. The catalytic activity of CuMoO4@Co3O4 can be attributed to the structure of the porous nanosheets and the synergistic effect between CuMoO4 and Co3O4.
Collapse
Affiliation(s)
- Fei Fei Dai
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Yan Xue Xue
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Ding Ling Gao
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Yu Xiang Liu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Jian Hua Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China. .,Fujian Province University Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qiao Jing Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Wei Wei Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Qian Yang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China. .,Fujian Province University Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| |
Collapse
|
5
|
Yue R, Mo Z, Shuai C, He S, Liu W, Liu G, Du Y, Dong Q, Ding J, Zhu X, Liu N, Guo R. N-doped bimetallic NiFeP nanocubic clusters derived from Prussian blue analogues as a high-efficiency and durable water splitting electrocatalyst. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Synergetic Effects of Mixed-Metal Polyoxometalates@Carbon-Based Composites as Electrocatalysts for the Oxygen Reduction and the Oxygen Evolution Reactions. Catalysts 2022. [DOI: 10.3390/catal12040440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The smart choice of polyoxometalates (POMs) and the design of POM@carbon-based composites are promising tools for producing active electrocatalysts for both the oxygen reduction (ORR) and the oxygen evolution reactions (OER). Hence, herein, we report the preparation, characterization and application of three composites based on doped, multi-walled carbon nanotubes (MWCNT_N6) and three different POMs (Na12[(FeOH2)2Fe2(As2W15O56)2]·54H2O, Na12[(NiOH2)2Ni2(As2W15O56)2]·54H2O and Na14[(FeOH2)2Ni2(As2W15O56)2]·55H2O) as ORR and OER electrocatalysts in alkaline medium (pH = 13). Overall, the three POM@MWCNT_N6 composites showed good ORR performance with onset potentials between 0.80 and 0.81 V vs. RHE and diffusion-limiting current densities ranging from −3.19 to −3.66 mA cm−2. Fe4@MWCNT_N6 and Fe2Ni2@MWCNT_N6 also showed good stability after 12 h (84% and 80% of initial current). The number of electrons transferred per O2 molecule was close to three, suggesting a mixed regime. Moreover, the Fe2Ni2@MWCNT_N6 presented remarkable OER performance with an overpotential of 0.36 V vs. RHE (for j = 10 mA cm−2), a jmax close to 135 mA cm−2 and fast kinetics with a Tafel slope of 45 mV dec−1. More importantly, this electrocatalyst outperformed not only most POM@carbon-based composites reported so far but also the state-of-the-art RuO2 electrocatalyst. Thus, this work represents a step forward towards bifunctional electrocatalysts using less expensive materials.
Collapse
|
7
|
Sun H, Jing C, Shang W, Wang F, Zeng M, Ju S, Li K, Jia Z. Polyoxometalate-based Composite Cluster with Core-Shell Structure: Co4(PW9)2@Graphdiyne as Stable Electrocatalyst for Oxygen Evolution and its Mechanism Research. NEW J CHEM 2022. [DOI: 10.1039/d2nj01459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A composite cluster with core-shell structure which is composed of polyoxometalates (POMs) and graphdiyne (GDY) was synthesized and applied for the electrochemical oxygen evolution reaction (OER). Compared with the original...
Collapse
|