1
|
Liu Y, Hu Q, Yang X, Kang J. Unveiling the potential of amorphous nanocatalysts in membrane-based hydrogen production. MATERIALS HORIZONS 2024; 11:4885-4910. [PMID: 39086327 DOI: 10.1039/d4mh00589a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Hydrogen, as a clean and renewable energy source, is a promising candidate to replace fossil fuels and alleviate the environmental crisis. Compared with the traditional H-type cells with a finite-gap, the design of membrane electrodes can reduce the gas transmission resistance, enhance the current density, and improve the efficiency of hydrogen production. However, the harsh environment in the electrolyser makes the membrane electrode based water electrolysis technology still limited by the lack of catalyst activity and stability under the working conditions. Due to the abundant active sites and structural flexibility, amorphous nanocatalysts are alternatives. In this paper, we review the recent research progress of amorphous nanomaterials as electrocatalysts for hydrogen production by electrolysis at membrane electrodes, illustrate and discuss their structural advantages in membrane electrode catalytic systems, as well as explore the significance of the amorphous structure for the development of membrane electrode systems. Finally, the article also looks at future opportunities and adaptations of amorphous catalysts for hydrogen production at membrane electrodes. The authors hope that this review will deepen the understanding of the potential of amorphous nanomaterials for application in electrochemical hydrogen production, facilitating future nanomaterials research and new sustainable pathways for hydrogen production.
Collapse
Affiliation(s)
- Yifei Liu
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Qi Hu
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Xiuyi Yang
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Jianxin Kang
- School of Chemistry, Beihang University, Beijing 100191, China.
| |
Collapse
|
2
|
Ding L, Li K, Wang W, Xie Z, Yu S, Yu H, Cullen DA, Keane A, Ayers K, Capuano CB, Liu F, Gao PX, Zhang FY. Amorphous Iridium Oxide-Integrated Anode Electrodes with Ultrahigh Material Utilization for Hydrogen Production at Industrial Current Densities. NANO-MICRO LETTERS 2024; 16:203. [PMID: 38789605 PMCID: PMC11126398 DOI: 10.1007/s40820-024-01411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/05/2024] [Indexed: 05/26/2024]
Abstract
Herein, ionomer-free amorphous iridium oxide (IrOx) thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells (PEMECs) via low-cost, environmentally friendly, and easily scalable electrodeposition at room temperature. Combined with a Nafion 117 membrane, the IrOx-integrated electrode with an ultralow loading of 0.075 mg cm-2 delivers a high cell efficiency of about 90%, achieving more than 96% catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane (2 mg cm-2). Additionally, the IrOx electrode demonstrates superior performance, higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes. Notably, the remarkable performance could be mainly due to the amorphous phase property, sufficient Ir3+ content, and rich surface hydroxide groups in catalysts. Overall, due to the high activity, high cell efficiency, an economical, greatly simplified and easily scalable fabrication process, and ultrahigh material utilization, the IrOx electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.
Collapse
Affiliation(s)
- Lei Ding
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kui Li
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Weitian Wang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhiqiang Xie
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Shule Yu
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Haoran Yu
- Oak Ridge National Lab, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - David A Cullen
- Oak Ridge National Lab, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Alex Keane
- Nel Hydrogen, Wallingford, CT, 06492, USA
| | | | | | - Fangyuan Liu
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Pu-Xian Gao
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Feng-Yuan Zhang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
Liu RT, Xu ZL, Li FM, Chen FY, Yu JY, Yan Y, Chen Y, Xia BY. Recent advances in proton exchange membrane water electrolysis. Chem Soc Rev 2023; 52:5652-5683. [PMID: 37492961 DOI: 10.1039/d2cs00681b] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) are an attractive technology for renewable energy conversion and storage. By using green electricity generated from renewable sources like wind or solar, high-purity hydrogen gas can be produced in PEMWE systems, which can be used in fuel cells and other industrial sectors. To date, significant advances have been achieved in improving the efficiency of PEMWEs through the design of stack components; however, challenges remain for their large-scale and long-term application due to high cost and durability issues in acidic conditions. In this review, we examine the latest developments in engineering PEMWE systems and assess the gap that still needs to be filled for their practical applications. We provide a comprehensive summary of the reaction mechanisms, the correlation among structure-composition-performance, manufacturing methods, system design strategies, and operation protocols of advanced PEMWEs. We also highlight the discrepancies between the critical parameters required for practical PEMWEs and those reported in the literature. Finally, we propose the potential solution to bridge the gap and enable the appreciable applications of PEMWEs. This review may provide valuable insights for research communities and industry practitioners working in these fields and facilitate the development of more cost-effective and durable PEMWE systems for a sustainable energy future.
Collapse
Affiliation(s)
- Rui-Ting Liu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Zheng-Long Xu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| | - Fei-Yang Chen
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Jing-Ya Yu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| |
Collapse
|
4
|
Ding L, Wang W, Xie Z, Li K, Yu S, Capuano CB, Keane A, Ayers K, Zhang FY. Highly Porous Iridium Thin Electrodes with Low Loading and Improved Reaction Kinetics for Hydrogen Generation in PEM Electrolyzer Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24284-24295. [PMID: 37167124 DOI: 10.1021/acsami.2c23304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Highly efficient electrodes with simplified fabrication and low cost are highly desired for the commercialization of proton exchange membrane electrolyzer cells (PEMECs). Herein, highly porous Ir-coated thin/tunable liquid/gas diffusion layers with honeycomb-structured catalyst layers were fabricated as anode electrodes for PEMECs via integrating a facile and fast electroplating process with efficient template removal. Combined with a Nafion 117 membrane, a low cell voltage of 1.842 V at 2000 mA/cm2 and a high mass activity of 4.16 A/mgIr at 1.7 V were achieved with a low Ir loading of 0.27 mg/cm2, outperforming most of the recently reported anode catalysts. Moreover, the thin electrode shows outstanding stability at a high current density of 1800 mA/cm2 in the practical PEMEC. Moreover, with in-situ high-speed visualizations in PEMECs, the catalyst layer structure's impact on real-time electrochemical reactions and mass transport phenomena was investigated for the first time. Increased active sites and improved multiphase transport properties with favorable bubble detachment and water diffusion for the honeycomb-structured electrode are revealed. Overall, the significantly simplified ionomer-free honeycomb thin electrode with low catalyst loading and remarkable performance could efficiently accelerate the industrial application of PEMECs.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Kui Li
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, Connecticut 06492, United States
| | - Kathy Ayers
- Nel Hydrogen, Wallingford, Connecticut 06492, United States
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| |
Collapse
|
5
|
Ouimet RJ, Glenn JR, De Porcellinis D, Motz AR, Carmo M, Ayers KE. The Role of Electrocatalysts in the Development of Gigawatt-Scale PEM Electrolyzers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ryan J. Ouimet
- Nel Hydrogen, 10 Technology Drive, Wallingford, Connecticut 06492, United States
| | - Jennifer R. Glenn
- Nel Hydrogen, 10 Technology Drive, Wallingford, Connecticut 06492, United States
| | - Diana De Porcellinis
- Nel Hydrogen, 10 Technology Drive, Wallingford, Connecticut 06492, United States
| | - Andrew R. Motz
- Nel Hydrogen, 10 Technology Drive, Wallingford, Connecticut 06492, United States
| | - Marcelo Carmo
- Nel Hydrogen, 10 Technology Drive, Wallingford, Connecticut 06492, United States
| | - Katherine E. Ayers
- Nel Hydrogen, 10 Technology Drive, Wallingford, Connecticut 06492, United States
| |
Collapse
|
6
|
Cha JI, Baik C, Lee SW, Pak C. Improved utilization of IrOx on Ti4O7 supports in Membrane Electrode Assembly for Polymer Electrolyte Membrane Water Electrolyzer. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|