1
|
Muddasar M, Mushtaq M, Beaucamp A, Kennedy T, Culebras M, Collins MN. Synthesis of Sustainable Lignin Precursors for Hierarchical Porous Carbons and Their Efficient Performance in Energy Storage Applications. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:2352-2363. [PMID: 38362533 PMCID: PMC10865442 DOI: 10.1021/acssuschemeng.3c07202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
Lignin-derived porous carbons have great potential for energy storage applications. However, their traditional synthesis requires highly corrosive activating agents in order to produce porous structures. In this work, an environmentally friendly and unique method has been developed for preparing lignin-based 3D spherical porous carbons (LSPCs). Dropwise injection of a lignin solution containing PVA sacrificial templates into liquid nitrogen produces tiny spheres that are lyophilized and carbonized to produce LSPCs. Most of the synthesized samples possess excellent specific surface areas (426.6-790.5 m2/g) along with hierarchical micro- and mesoporous morphologies. When tested in supercapacitor applications, LSPC-28 demonstrates a superior specific capacitance of 102.3 F/g at 0.5 A/g, excellent rate capability with 70.3% capacitance retention at 20 A/g, and a commendable energy density of 2.1 Wh/kg at 250 W/kg. These materials (LSPC-46) also show promising performance as an anode material in sodium-ion batteries with high reversible capacity (110 mAh g-1 at 100 mA g-1), high Coulombic efficiency, and excellent cycling stability. This novel and green technique is anticipated to facilitate the scalability of lignin-based porous carbons and open a range of research opportunities for energy storage applications.
Collapse
Affiliation(s)
- Muhammad Muddasar
- Stokes
Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Misbah Mushtaq
- Department
of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Anne Beaucamp
- Stokes
Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Tadhg Kennedy
- Department
of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mario Culebras
- Institute
of Material Science, (ICMUV) University of Valencia, Paterna 22085, Spain
| | - Maurice N. Collins
- Stokes
Laboratories, School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
- SFI
Centre for Advanced Materials and BioEngineering Research, Dublin D02 PN40, Ireland
| |
Collapse
|
2
|
Testa D, Zuccante G, Muhyuddin M, Landone R, Scommegna A, Lorenzi R, Acciarri M, Petri E, Soavi F, Poggini L, Capozzoli L, Lavacchi A, Lamanna N, Franzetti A, Zoia L, Santoro C. Giving New Life to Waste Cigarette Butts: Transformation into Platinum Group Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Acid, Neutral and Alkaline Environment. Catalysts 2023. [DOI: 10.3390/catal13030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Following the core theme of a circular economy, a novel strategy to upcycle cigarette butt waste into platinum group metal (PGM)-free metal nitrogen carbon (M-N-C) electrocatalysts for oxygen reduction reaction (ORR) is presented. The experimental route was composed of (i) the transformation of the powdered cigarette butts into carbonaceous char via pyrolysis at 450 °C, 600 °C, 750 °C and 900 °C, (ii) the porosity activation with KOH and (iii) the functionalization of the activated chars with iron (II) phthalocyanine (FePc). The electrochemical outcomes obtained by the rotating disk electrode (RRDE) technique revealed that the sample pyrolyzed at 450 °C (i.e., cig_450) outperformed the other counterparts with its highest onset (Eon) and half-wave potentials (E1/2) and demonstrated nearly tetra-electronic ORR in acidic, neutral and alkaline electrolytes, all resulting from the optimal surface chemistry and textural properties.
Collapse
|
3
|
Jiang D, Chen H, Xie H, Cheng K, Li L, Xie K, Wang Y. Fe, N, S co-doped cellulose paper carbon fibers as an air-cathode catalyst for microbial fuel cells. ENVIRONMENTAL RESEARCH 2023; 221:115308. [PMID: 36646199 DOI: 10.1016/j.envres.2023.115308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The heteroatoms and transition metal co-doped carbon-based catalysts are an important way to improve the catalytic activity of oxygen reduction reaction (ORR). Herein, we reported a facile method to obtain iron, nitrogen, and sulfur co-doped cellulose paper carbon fibers as catalysts (Fe-N-S/CFs) for ORR in microbial fuel cells (MFCs) with the adsorption recovery of Congo red molecules from dye wastewater. The thermal treatment promoted the etching of carbon surface by ferric ions, resulting in increased surface roughness for forming the defective carbon structure. The rich active species and defective carbon formed on the etched surface to enhance the electroactive surface area and effective sites. Fe-N-S/CFs catalysts achieved high half-wave potential due to the synergy effect between chemical components and defect structures. The assembled single-chamber air cathode MFC gained a high maximum power density of 1773 ± 40 mW m-2 versus Pt/C MFC of 1325 ± 94 mW m-2. This work provides a strategy for recovering dye molecules from wastewater to prepare non-precious metal catalysts for enhancing ORR activity.
Collapse
Affiliation(s)
- Demin Jiang
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404100, China
| | - Huina Chen
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hao Xie
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Kai Cheng
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Liang Li
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Kun Xie
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404100, China
| | - Yuqiao Wang
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Wang S, Mei Y, Shao Z, Wang J, Tan Z, Qiu Z, Wang M, Zheng H. Biomass Hierarchical Porous Carbonized Typha angustifolia Prepared by Green Pore-Making Technology for Energy Storage. ACS OMEGA 2023; 8:1353-1361. [PMID: 36643506 PMCID: PMC9835543 DOI: 10.1021/acsomega.2c06782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The cost-effective biomass-derived carbon with high electrochemical performance is highly desirable for the sustainable development of advanced energy storage devices. In this manuscript, Typha angustifolia with a large output and loose porous characteristics was selected as the raw material of biomass. In the synthesis process, KHCO3, which is more environmentally friendly, is used as a pore-forming agent, and the low-cost, easy-to-clean fluxing agent NaCl is used to assist the pore-forming process. Based on the analysis of thermogravimetric-infrared test results, the calcination procedure of porous carbon was designed reasonably, so that the functions of the pore-forming agent and fluxing agent could be fully exerted. Its high electrochemical performance is attributed to combined contributions from high surface area and hierarchical porous structures. The as-prepared carbon also showed an outstanding capacitance of 317.2 F/g at a current density of 1 A g-1 and a high capacitance retention of over 97.83% after 5000 cycles at a current density of 4 A g-1. This work provides an outstanding renewable candidate and a feasible route design strategy for the fabrication of high-performance electrodes.
Collapse
|
5
|
Muhyuddin M, Testa D, Lorenzi R, Vanacore GM, Poli F, Soavi F, Specchia S, Giurlani W, Innocenti M, Rosi L, Santoro C. Iron-based electrocatalysts derived from scrap tires for oxygen reduction reaction: Evolution of synthesis-structure-performance relationship in acidic, neutral and alkaline media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Effectiveness of biophotovoltaics system modified with fuller-clay composite separators for chromium removal. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Bai J, Feng Z, Huang L, Tang J, Wang Y, Wang S. Hardwood Kraft lignin-derived carbon microfibers with enhanced electrochemical performance. Int J Biol Macromol 2022; 220:733-742. [PMID: 36007695 DOI: 10.1016/j.ijbiomac.2022.08.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
It is of great challenge to prepare lignin-derived carbon microfibers with suitable graphite crystallites due to the volatilization of incorporated polymers. In this work, we proposed a simple method for the construction of graphite crystallites based on the regulation of the hydrogen-bonding interaction between hardwood Kraft lignin (HKL) and poly(m-phenylene isophthalamide) (PMIA). The strong hydrogen-bonding interaction demonstrated by the results of TG, FTIR, XPS, Raman and XRD increased the graphite crystal size and perfected the crystal structure of HKL-based carbon microfibers, which further enhanced the electrochemical performance of HKL/PMIA-based carbon microfibers electrodes, especially for the increase of capacitance and cycle performance and the decrease of charge transfer resistance. The specific capacitance, energy density and power density of P2H2-based (HKL/PMIA = 1:1) carbon microfibers electrode were up to 190.8 F g-1, 34.4 Wh kg-1 and 540 W kg-1 at a current density of 0.5 A g-1, respectively, which were comparable to or even higher than those of lignin composites-based carbon fibers electrodes. This work reveals the relationship between hydrogen-bonding interaction and crystalline structure, which can be further considered in the preparation of lignin-based carbon fibers electrodes.
Collapse
Affiliation(s)
- Jixing Bai
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zihao Feng
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Linjun Huang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jianguo Tang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yao Wang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shichao Wang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
8
|
Omenesa Idris M, Guerrero–Barajas C, Kim HC, Ali Yaqoob A, Nasir Mohamad Ibrahim M. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Hu ZR, Li DD, Kim TH, Kim MS, Xu T, Ma MG, Choi SE, Si C. Lignin-Based/Polypyrrole Carbon Nanofiber Electrode With Enhanced Electrochemical Properties by Electrospun Method. Front Chem 2022; 10:841956. [PMID: 35211457 PMCID: PMC8861302 DOI: 10.3389/fchem.2022.841956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 01/01/2023] Open
Abstract
Tailoring the structure and properties of lignin is an important step toward electrochemical applications. In this study, lignin/polypyrrole (PPy) composite electrode films with microporous and mesoporous structures were designed effectively by electrostatic spinning, carbonization, and in situ polymerization methods. The lignin can not only reduce the cost of carbon fiber but also increase the specific surface area of composite films due to the removal of carbonyl and phenolic functional groups of lignin during carbonization. Besides, the compact three-dimensional (3D) conductive network structures were constructed with PPy particles densely coated on the lignin nanofibers, which was helpful to improve the conductivity and fast electron transfer during the charging and discharging processes. The synthesized lignin carbon fibers/PPy anode materials had good electrochemical performance in 1 M H2SO4 electrolyte. The results showed that, at a current density of 1 A g−1, the lignin carbon nanofibers/PPy (LCNFs/PPy) had a larger specific capacitance of 213.7 F g−1 than carbon nanofibers (CNFs), lignin carbon nanofibers (LCNFs), and lignin/PPy fiber (LPAN/PPy). In addition, the specific surface area of LCNFs/PPy reached 872.60 m2 g−1 and the average pore size decreased to 2.50 nm after being coated by PPy. Therefore, the independent non-binder and self-supporting conductive film is expected to be a promising electrode material for supercapacitors with high performance.
Collapse
Affiliation(s)
- Zhou-Rui Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Dan-Dan Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Tae-Hee Kim
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea
| | - Min-Seok Kim
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ting Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Ming-Guo Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Ming-Guo Ma, ; Sun-Eun Choi, ; Chuanling Si,
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea
- *Correspondence: Ming-Guo Ma, ; Sun-Eun Choi, ; Chuanling Si,
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
- *Correspondence: Ming-Guo Ma, ; Sun-Eun Choi, ; Chuanling Si,
| |
Collapse
|