1
|
Du W, Liu L, Yin L, Li B, Ma Y, Guo X, Zang HY, Zhang N, Zhu G. Ultrathin Free-Standing Porous Aromatic Framework Membranes for Efficient Anion Transport. Angew Chem Int Ed Engl 2024; 63:e202402943. [PMID: 38529715 DOI: 10.1002/anie.202402943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Porous aromatic frameworks (PAFs) show promising potential in anionic conduction due to their high stability and customizable functionality. However, the insolubility of most PAFs presents a significant challenge in their processing into membranes and subsequent applications. In this study, continuous PAF membranes with adjustable thickness were successfully created using liquid-solid interfacial polymerization. The rigid backbone and the stable C-C coupling endow PAF membrane with superior chemical and dimensional stabilities over most conventional polymer membranes. Different quaternary ammonium functionalities were anchored to the backbone through flexible alkyl chains with tunable length. The optimal PAF membrane exhibited an OH- conductivity of 356.6 mS ⋅ cm-1 at 80 °C and 98 % relative humidity. Additionally, the PAF membrane exhibited outstanding alkaline stability, retaining 95 % of its OH- conductivity after 1000 hours in 1 M NaOH. To the best of our knowledge, this is the first application of PAF materials in anion exchange membranes, achieving the highest OH- conductivity and exceptional chemical/dimensional stability. This work provides the possibility for the potential of PAF materials in anionic conductive membranes.
Collapse
Affiliation(s)
- Wenguang Du
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lin Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Liying Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Bo Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yu Ma
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoyu Guo
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Ying Zang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ning Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
2
|
Zeng L, Yuan W, Ma X, He Q, Zhang L, Wang J, Wei Z. Dual-Cation Interpenetrating Polymer Network Anion Exchange Membrane for Fuel Cells and Water Electrolyzers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lingping Zeng
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Wei Yuan
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Xiaoqin Ma
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Qian He
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Ling Zhang
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Jianchuan Wang
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China
| | - Zidong Wei
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|