1
|
Suna G, Erdemir E, Liv L, Karakus AC, Gunturkun D, Ozturk T, Karakuş E. A novel thienothiophene-based "dual-responsive" probe for rapid, selective and sensitive detection of hypochlorite. Talanta 2024; 270:125545. [PMID: 38128280 DOI: 10.1016/j.talanta.2023.125545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Hypochlorite/hypochlorous acid (ClO-/HOCl) is a biologically crucial reactive oxygen species (ROS), produced in living organisms and has a critical role as an antimicrobial agent in the natural defense system. However, when ClO- is produced excessively, it can lead to the oxidative damage of biomolecules, resulting in organ damage and various diseases. Therefore, it is imperative to have a straightforward, quick and reliable method for over watching the minimum amount of ClO- in different environments. RESULTS Herein, a new probe TTM, containing thienothiophene and malononitrile units, was developed for exceptionally selective and sensitive hypochlorite (ClO-) detection. TTM demonstrated a rapid "turn-on" fluorescence response (<30 s), naked-eye detection (colorimetric), voltammetric read-out with anodic scan, low detection limit (LOD = 0.58 μM and 1.43 μM for optical and electrochemical methods, respectively) and applicability in detecting ClO- in real water samples and living cells. SIGNIFICANCE AND NOVELTY This study represents one of the rare examples of a small thienothiophene-based molecule for both optical and electrochemical detections of ClO- in an aqueous medium.
Collapse
Affiliation(s)
- Garen Suna
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey; Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Eda Erdemir
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey; Department of Chemistry, Faculty of Science, Istanbul University, 34134, Beyazit, Istanbul, Turkey
| | - Lokman Liv
- Electrochemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey
| | - Aysenur Cataler Karakus
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey
| | - Dilara Gunturkun
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Turan Ozturk
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey; Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | - Erman Karakuş
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey.
| |
Collapse
|
2
|
Shao M, Dong J, Lv X, Zhou C, Xia M, Liu C, Ouyang M, Zhang C. Design Strategies for High Reflectivity Contrast and Stability Adaptive Camouflage Electrochromic Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58723-58733. [PMID: 38055918 DOI: 10.1021/acsami.3c15260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The integration of an electrochromic (EC), energy storage, and adaptive camouflage system into a multifunctional electronic device is highly desirable and yet challenging. In this work, two carbazole-based conjugated polymers were prepared to achieve a reversible color change from transparent to yellow, green, and blue-green by easy electrochemical polymerization. Due to its dendritic geometry, the conjugated polymer p3CBCB exhibits a loosely packed structure with a relatively higher specific surface area than pCBCB, as well as a relatively better ionic conductivity. The kinetic and galvanostatic charge-discharge (GCD) study reveals that p3CBCB has superior properties with larger optical contrast and volumetric capacitance. Moreover, EC supercapacitors (ECSCs) are constructed with p3CBCB as the EC layer and ZnO@PEDOT:PSS as the ion storage layer. The dual function of a ZnO interface layer on improvement in reflectivity contrast (ΔR% > 35.1%) and cycling stability (over 40,000 cycles) using ZnO as a reflective and protective layer is demonstrated in an ion storage layer. Additionally, patterned prototype devices based on the design of double-sided ITO glass were successfully assembled, which can simulate conditions of various natural environments including forests, wilderness, and deserts. This study provides new ideas not only for the preparation of conjugated polymers that can simultaneously realize reversible transparent-yellow-green conversion but also for the achievement of high coloration efficiency, high reflectivity contrast, and good stability of ECSCs for adaptive camouflage.
Collapse
Affiliation(s)
- Mingfa Shao
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Juncheng Dong
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaojing Lv
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Changjiang Zhou
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Minao Xia
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chunyan Liu
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Mi Ouyang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Cheng Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
3
|
Suna G, Gunduz S, Topal S, Ozturk T, Karakuş E. A unique triple-channel fluorescent probe for discriminative detection of cyanide, hydrazine, and hypochlorite. Talanta 2023; 257:124365. [PMID: 36827939 DOI: 10.1016/j.talanta.2023.124365] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Herein, the first triple-channel fluorescent probe, TTB, excited at the same wavelength (λex = 360 nm) in the same sensing medium for the detection and discrimination of cyanide, hydrazine, and hypochlorite, is disclosed. While a fluorescent white color appeared (λem = 470 nm) with the addition of cyanide ion into the probe solution, upon addition of hydrazine and hypochlorite, green (λem = 503 nm) and orange (λem = 585 nm) fluorescent colors, respectively, were observed. A naked-eye detection for the three ions was documented. With the appearance of orange color, a mega Stokes shift of 175 nm was observed. The probe exhibited excellent selectivity and lower detection limits of 0.24 μM, 4.1 nM and 0.27 μM, and dynamic ranges of 0.0-2.0 μM, 0.0-0.05 μM and 0.0-2.0 μM for cyanide, hydrazine and hypochlorite, respectively. The sensing mechanism was investigated through computational studies before and after the addition of cyanide, hypochlorite, and hydrazine, applying density functional theory (DFT), along with the calculation of optical properties by time-dependent DFT (TD-DFT) method. The results were found to be in good agreement with the experimental values. Remarkably, the probe, TTB, successfully detected cyanide, hydrazine, and hypochlorite in complex water samples. Moreover, the detection of cyanide was successfully performed in apricot kernels, as well as hypochlorite in fruits and vegetables.
Collapse
Affiliation(s)
- Garen Suna
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey; Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Simay Gunduz
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey
| | - Sebahat Topal
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Turan Ozturk
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey; Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | - Erman Karakuş
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey.
| |
Collapse
|
4
|
Zheng HW, Yang DD, Shi YS, Xiao T, Zheng XJ. Multistimuli-responsive materials based on a zinc(II) complex with high-contrast and multicolor switching. Dalton Trans 2022; 51:15370-15375. [PMID: 36148666 DOI: 10.1039/d2dt02435g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of stimulus-responsive luminescent materials, especially those based on a single compound exhibiting multicolor and high-contrast (Δλem ≥ 100 nm) chromic properties, is a critical challenge. In this work, we synthesized and characterized a zinc(II) complex (1). As expected, 1 displays aggregation-induced emission enhancement (AIEE) in THF/H2O mixtures, and remarkable multicolor switching under external stimuli in the solid state. Complex 1 shows reversible mechanochromic luminescence behavior with a large wavelength shift (Δλem = 100 nm) during the grinding-fuming cycles, due to the phase transformation between the crystalline and amorphous states. More impressively, 1 exhibits obvious acidochromic properties (Δλem = 130 nm) which originate from the adsorption of vapor and a gas-solid reaction on the crystal surface. Furthermore, 1 exhibits electrochemical oxidation behavior accompanied by quenching of yellow-green emission due to the overlap of an emission band and an absorption band. The above-mentioned color changes under ambient light can also be observed by the naked eye during the mechanical, acid-base vapor and electrical stimulation. Based on the high-contrast and multicolor switching, complex 1 was successfully developed into test papers and films in the field of rapid detection of mechanical stimuli and HCl/NH3 vapors.
Collapse
Affiliation(s)
- Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yong-Sheng Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Tong Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
5
|
Ma Y, Hou Y, Zhang Y, Chang L, Li R, Niu H. Preparation and electrochromic properties of polyamides based on 3,
4‐dimethylthieno
[2,3‐b]thiophene. J Appl Polym Sci 2022. [DOI: 10.1002/app.52348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Ma
- Key Laboratory of Chemistry, Chemical Engineering and Materials, High‐Quality Technology Conversion, Heilongjiang Province & School of Chemistry and Chemical Engineering Heilongjiang University Harbin China
| | - Yanjun Hou
- Key Laboratory of Chemistry, Chemical Engineering and Materials, High‐Quality Technology Conversion, Heilongjiang Province & School of Chemistry and Chemical Engineering Heilongjiang University Harbin China
| | - Yuhang Zhang
- Key Laboratory of Chemistry, Chemical Engineering and Materials, High‐Quality Technology Conversion, Heilongjiang Province & School of Chemistry and Chemical Engineering Heilongjiang University Harbin China
| | - Lijing Chang
- Key Laboratory of Chemistry, Chemical Engineering and Materials, High‐Quality Technology Conversion, Heilongjiang Province & School of Chemistry and Chemical Engineering Heilongjiang University Harbin China
| | - Rui Li
- Key Laboratory of Chemistry, Chemical Engineering and Materials, High‐Quality Technology Conversion, Heilongjiang Province & School of Chemistry and Chemical Engineering Heilongjiang University Harbin China
| | - Haijun Niu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & Department of Macromolecular Science and Engineering, School of Chemistry and Chemical Engineering Heilongjiang University Harbin China
| |
Collapse
|