1
|
Abd-Elhamid AI, Ali HH, Nayl AA. Modification of sugarcane bagasse as a novel lignocellulosic biomass adsorbent nanocomposite to improve adsorption of methylene blue. CELLULOSE 2023; 30:5239-5258. [DOI: 10.1007/s10570-023-05205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/13/2023] [Indexed: 09/02/2023]
|
2
|
Hu H, Zheng Y, Zhu Y, Rong J, Dai Y, Zhang T, Yang D, Qiu F. Pt-Doped Biomass Carbon Decorated with MoS 2 Nanosheets as an Electrocatalyst for Hydrogen Evolution. Inorg Chem 2023; 62:601-608. [PMID: 36538349 DOI: 10.1021/acs.inorgchem.2c03909] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is necessary to develop an efficient hydrogen evolution catalyst to improve the efficiency of the hydrogen evolution reaction (HER). Herein, a MoS2 nanosheet is decorated on the Pt-doping biomass yeast cells (MoS2@Pt/YC) via a simple hydrothermal process. Reducing the noble metal loading without compromising its performance is a challenging task. The smooth surface of YCs is conducive to the growth of MoS2 nanosheets, and its functional groups provide attachment sites for metal Pt. The Pt/YC is covered with MoS2 nanosheets, thus improving the exposed active sites for HER. The obtained MoS2@Pt/YC delivers a competitive overpotential of 118 mV at the benchmark current density of 10 mA cm-2 and achieves a small Tafel slope of 74 mV dec-1, indicating the great HER performance of MoS2@Pt/YC. Moreover, MoS2@Pt/YC shows robust stability after 24 h of continuous operation toward HER in acidic solution. By introducing transition metal sulfides with high specific surface area, the loading of precious metals can be reduced without compromising properties. This work provides a method to design Pt-doping HER electrocatalysts through a simple method. The facile preparation process for MoS2@Pt/YC and its outstanding performance allow it to be a promising electrocatalyst for practical HER application.
Collapse
Affiliation(s)
- Huiting Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yunhua Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jian Rong
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Yuting Dai
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
3
|
Liu Y, Gong W, Yao S, Liang Y, Yang Y, Yu T, Yuan C, Yang Y. Synergistically Coupling of Manganese-Doped CoP Nanowires Arrays with Highly Dispersed Ni(PO 3) 2 Nanoclusters toward Efficient Overall Water Splitting. Inorg Chem 2022; 61:14201-14210. [PMID: 36007160 DOI: 10.1021/acs.inorgchem.2c02561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Co-based phosphides are considered to be highly promising electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). However, their electrocatalytic efficiencies are greatly limited by the weak water dissociation process and unsatisfactory adsorption ability toward reaction intermediates. Herein, novel Mn-doped CoP/Ni(PO3)2 heterostructure array electrocatalysts which are composed of highly dispersed Ni(PO3)2 nanoclusters that are tightly wrapped on Mn-doped CoP nanowire arrays are designed. An electrocatalytic performance test suggested that the heterostructure arrays exhibited competitive electrocatalytic performance toward both HER and OER, which needed overpotentials of 116 and 245 mV to drive a current of 10 mA/cm2, respectively. Encouragingly, a symmetric two electrode water splitting system constructed by the heterostructure arrays required an ultralow cell voltage, suggesting the potential in overall water splitting. First-principles calculations combined with experimental characterization were further performed to clarify the electrocatalytic mechanism. On the one hand, effective doping of Mn atoms could optimize the surface electronic structure of CoP and promote the intrinsic activity. On the other hand, the compact and abundant heterogeneous interface between Ni(PO3)2 and CoP not only made more active sites exposed but also promoted the effective adsorption of intermediate reaction species on the catalyst surface. This work provides a new strategy to improve electrocatalytic performance of Co-based phosphides through the synergistic coupling of metal-doping and phosphate surface decoration, which will greatly promote the development of highly efficient electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Yuan Liu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330098, Jiangxi, People's Republic of China
| | - Wufei Gong
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330098, Jiangxi, People's Republic of China
| | - Shenman Yao
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330098, Jiangxi, People's Republic of China
| | - Yan Liang
- Department of Artificial Intelligence, Jiangxi University of Technology, Nanchang 330022, Jiangxi, People's Republic of China
| | - Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Ting Yu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330098, Jiangxi, People's Republic of China
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330098, Jiangxi, People's Republic of China
| | - Yong Yang
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330098, Jiangxi, People's Republic of China
| |
Collapse
|