Hao J, Yan L, Zou X, Bai Y, Han Y, Zhu C, Zhou Y, Xiang B. Series of Halogen Engineered Ni(OH)
2 Nanosheet for Pseudocapacitive Energy Storage with High Energy Density.
SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023;
19:e2300467. [PMID:
37127871 DOI:
10.1002/smll.202300467]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Ni(OH)2 nanosheet, acting as a potential active material for supercapacitors, commonly suffers from sluggish reaction kinetics and low intrinsic conductivity, which results in suboptimal energy density and long cycle life. Herein, a convenient electrochemical halogen functionalization strategy is applied for the preparation of mono/bihalogen engineered Ni(OH)2 electrode materials. The theoretical calculations and experimental results found that thanks to the extraordinarily high electronegativity, optimal reversibility, electronic conductivity, and reaction kinetics could be achieved through F functionalization . However, benefiting from the largest ionic radius, INi(OH)2 contributes the best specific capacity and morphology transformation, which is a new finding that distinguishes it from previous reports in the literature. The exploration of the interaction effect of halogens (F, INi(OH)2 , F, BrNi(OH)2 , and Cl, INi(OH)2 ) manifests that F, INi(OH)2 delivers a higher specific capacity of 200.6 mAh g-1 and an excellent rate capability of 58.2% due to the weaker electrostatic repulsion, abundant defect structure, and large layer spacing. Moreover, the F, INi(OH)2 //FeOOH@NrGO device achieves a high energy density of 97.4 Wh kg-1 and an extremely high power density of 32426.7 W kg-1 , as well as good cycling stability. This work develops a pioneering tactic for designing energy storage materials to meet various demands.
Collapse