1
|
Yang C, Yao H, Yang T, Li X, Zhu P, Jin Z. Self-induced electron attraction center formation with pyrophosphorylation strategy for photocatalytic hydrogen evolution. NANOSCALE 2024; 16:2361-2372. [PMID: 38198207 DOI: 10.1039/d3nr05385g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
An integral approach towards augmenting the performance of photocatalytic hydrogen production lies in the induction of charge transfer mediators within the material matrix itself, thereby facilitating swift and efficient charge transfer processes. Here, CoTiO3 is induced to grow its electronic attraction center, CoP3, through a high-temperature phosphatization strategy. CoP3 acts as the active reduction site for the hydrogen evolution reaction and enhances the photocatalytic performance of the pristine catalyst. Compared with pure CoTiO3, the PCTO7 hybrid catalyst with the electronic attraction center CoP3 exhibits a superior photocatalytic performance and good stability. Experimental results show that the hydrogen evolution performance of the PCTO7 hybrid catalyst reaches 56.52 μmol, which is 78 times higher than that of the single catalyst CoTiO3 (0.72 μmol). These results demonstrate that the hybrid catalyst with the self-induced electronic attraction center has a higher light absorption capacity, faster charge carrier dynamics and improved photogenerated charge carrier separation and transfer than pure CoTiO3, resulting in excellent redox capability. DFT calculations provide evidence supporting the topological metal properties of CoP3 as the electron sink center. This study provides a feasible approach for enhancing the photocatalytic performance of a pristine catalyst employing a high-temperature phosphatization-induced electron sink center.
Collapse
Affiliation(s)
- Cheng Yang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R.China.
| | - Huiqin Yao
- Department of Chemistry, College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Tingting Yang
- School of Materials Science and Engineering, Key Laboratory of Polymer Materials and Manufacturing Technology, North Minzu University, Yinchuan 750021, P.R.China
| | - Xiaohong Li
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R.China.
| | - Pengfei Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shanxi, China.
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R.China.
| |
Collapse
|
2
|
Munawar T, Sardar S, Mukhtar F, Nadeem MS, Manzoor S, Ashiq MN, Khan SA, Koc M, Iqbal F. Fabrication of fullerene-supported La 2O 3-C 60 nanocomposites: dual-functional materials for photocatalysis and supercapacitor electrodes. Phys Chem Chem Phys 2023; 25:7010-7027. [PMID: 36809534 DOI: 10.1039/d2cp05357h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nowadays, water pollution and energy crises worldwide force researchers to develop multi-functional and highly efficient nanomaterials. In this scenario, the present work reports a dual-functional La2O3-C60 nanocomposite fabricated by a simple solution method. The grown nanomaterial worked as an efficient photocatalyst and proficient electrode material for supercapacitors. The physical and electrochemical properties were studied by state-of-the-art techniques. XRD, Raman spectroscopy, and FTIR spectroscopy confirmed the formation of the La2O3-C60 nanocomposite with TEM nano-graphs, and EDX mapping exhibits the loading of C60 on La2O3 particles. XPS confirmed the presence of varying oxidation states of La3+/La2+. The electrochemical capacitive properties were tested by CV, EIS, GCD, ECSA, and LSV, which indicated that the La2O3-C60 nanocomposite can be effectively used as an electrode material for durable and efficient supercapacitors. The photocatalytic test using methylene blue (MB) dye revealed the complete photodegradation of the MB dye under UV light irradiation after 30 min by a La2O3-C60 catalyst with a reusability up to 7 cycles. The lower energy bandgap, presence of deep-level emissions, and lower recombination rate of photoinduced charge carriers in the La2O3-C60 nanocomposite than those of bare La2O3 are responsible for enhanced photocatalytic activity with low-power UV irradiation. The fabrication of multi-functional and highly efficient electrode materials and photocatalysts such as La2O3-C60 nanocomposites is beneficial for the energy industry and environmental remediation applications.
Collapse
Affiliation(s)
- Tauseef Munawar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Sonia Sardar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Faisal Mukhtar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | | | - Sumaira Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shoukat Alim Khan
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Muammer Koc
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Faisal Iqbal
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| |
Collapse
|
3
|
Deka S. Nanostructured mixed transition metal oxide spinels for supercapacitor applications. Dalton Trans 2023; 52:839-856. [PMID: 36541048 DOI: 10.1039/d2dt02733j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There have been numerous applications of supercapacitors in day-to-day life. Along with batteries and fuel cells, supercapacitors play an essential role in supplementary electrochemical energy storage technologies. They are used as power sources in portable electronics, automobiles, power backup, medical equipment, etc. Among various working electrode materials explored for supercapacitors, nanostructured transition metal oxides containing mixed metals are highly specific and special, because of their stability, variable oxidation states of the constituted metal ions, possibility to tune the mixed metal combinations, and existence of new battery types and extrinsic pseudocapacitance. This review presents the key features and recent developments in the direction of synthesis and electrochemical energy storage behavior of some of the recent morphology-oriented transition metal oxide and mixed transition metal oxide nanoparticles. We also targeted the studies on a few of the recently developed flexible and bendable supercapacitor devices based on these mixed transition metal oxides.
Collapse
Affiliation(s)
- Sasanka Deka
- Department of Chemistry, University of Delhi, North Campus, Delhi 110007, India.
| |
Collapse
|
4
|
Facile Synthesis of Nb-Doped CoTiO3 Hexagonal Microprisms as Promising Anode Materials for Lithium-Ion Batteries. INORGANICS 2022. [DOI: 10.3390/inorganics11010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bimetallic oxides are demonstrated to show better electrochemical performance than single transition metal oxides. Recently, ilmenite-type transition metal titanate (MTiO3, M = Fe, Co, Ni, etc.) is emerging as a promising anode for lithium-ion batteries (LIBs) due to its comparable theoretical capacity and small volumetric change during cycling. However, the practical electrochemical performance is still harmed by its poor electronic conductivity. Herein, for the first time, a Nb-doping strategy is adopted to modify CoTiO3 hexagonal microprisms by a facile solvothermal method combined with an annealing treatment. Benefiting from the unique 1D morphology and the ameliorated conductivities induced by Nb-doping, the optimized Nb-doped CoTiO3 anode exhibits an improved lithium-storage capacity of 233 mA h g−1 at 100 mA g−1 after 100 cycles and excellent rate capability, which are superior to that of pure CoTiO3. This work sheds light on the potential application of titanium containing bimetallic oxide in the next-generation advanced rechargeable LIBs.
Collapse
|
5
|
Riaz M, Munawar T, Nadeem MS, Mukhtar F, Ali SD, Manzoor S, Ashiq MN, Iqbal F. Facile synthesis of fullerene-C60 and rGO-supported KCdCl3-based halide perovskite nanocomposites toward effective electrode material for supercapacitor. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Reddy Pallavolu M, Tanaya Das H, Anil Kumar Y, Naushad M, Sambasivam S, Hak Jung J, Joo SW. Marigold flower-like Sn3O4 nanostructures as efficient battery-type electrode material for high-performing asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Zhang C, Xu Z, Yu Y, Long A, Ge X, Song Y, An Y, Gu Y. Ternary NiMoCo alloys and fluffy carbon nanotubes grown on ZIF-67-derived polyhedral carbon frameworks as bifunctional electrocatalyst for efficient and stable overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Kumar YA, Das HT, Guddeti PR, Nallapureddy RR, Pallavolu MR, Alzahmi S, Obaidat IM. Self-Supported Co3O4@Mo-Co3O4 Needle-like Nanosheet Heterostructured Architectures of Battery-Type Electrodes for High-Performance Asymmetric Supercapacitors. NANOMATERIALS 2022; 12:nano12142330. [PMID: 35889555 PMCID: PMC9324492 DOI: 10.3390/nano12142330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022]
Abstract
Herein, this report uses Co3O4 nanoneedles to decorate Mo-Co3O4 nanosheets over Ni foam, which were fabricated by the hydrothermal route, in order to create a supercapacitor material which is compared with its counterparts. The surface morphology of the developed material was investigated through scanning electron microscopy and the structural properties were evaluated using XRD. The charging storage activities of the electrode materials were evaluated mainly by cyclic voltammetry and galvanostatic charge-discharge investigations. In comparison to binary metal oxides, the specific capacities for the composite Co3O4@Mo-Co3O4 nanosheets and Co3O4 nano-needles were calculated to be 814, and 615 C g−1 at a current density of 1 A g−1, respectively. The electrode of the composite Co3O4@Mo-Co3O4 nanosheets displayed superior stability during 4000 cycles, with a capacity of around 90%. The asymmetric Co3O4@Mo-Co3O4//AC device achieved a maximum specific energy of 51.35 Wh Kg−1 and power density of 790 W kg−1. The Co3O4@Mo-Co3O4//AC device capacity decreased by only 12.1% after 4000 long GCD cycles, which is considerably higher than that of similar electrodes. All these results reveal that the Co3O4@Mo-Co3O4 nanocomposite is a very promising electrode material and a stabled supercapacitor.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Himadri Tanaya Das
- Centre of Advanced Materials and Applications, Utkal University, Vanivihar, Bhubaneswar 751004, India;
| | | | | | - Mohan Reddy Pallavolu
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
- Correspondence: (M.R.P.); (I.M.O.)
| | - Salem Alzahmi
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Ihab M. Obaidat
- Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
- Correspondence: (M.R.P.); (I.M.O.)
| |
Collapse
|
9
|
Chimie douce derived Nickelt Cobalt oxynitride as electrode material for high energy density supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|