1
|
Wu YH, Mehta H, Willinger E, Yuwono JA, Kumar PV, Abdala PM, Wach A, Kierzkowska A, Donat F, Kuznetsov DA, Müller CR. Altering Oxygen Binding by Redox-Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System. Angew Chem Int Ed Engl 2023; 62:e202217186. [PMID: 36538473 PMCID: PMC10108258 DOI: 10.1002/anie.202217186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Establishing generic catalyst design principles by identifying structural features of materials that influence their performance will advance the rational engineering of new catalytic materials. In this study, by investigating metal-substituted manganese oxide (spinel) nanoparticles, Mn3 O4 :M (M=Sr, Ca, Mg, Zn, Cu), we rationalize the dependence of the activity of Mn3 O4 :M for the electrocatalytic oxygen reduction reaction (ORR) on the enthalpy of formation of the binary MO oxide, Δf H°(MO), and the Lewis acidity of the M2+ substituent. Incorporation of elements M with low Δf H°(MO) enhances the oxygen binding strength in Mn3 O4 :M, which affects its activity in ORR due to the established correlation between ORR activity and the binding energy of *O/*OH/*OOH species. Our work provides a perspective on the design of new compositions for oxygen electrocatalysis relying on the rational substitution/doping by redox-inactive elements.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Harshit Mehta
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Elena Willinger
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Jodie A Yuwono
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.,College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Anna Wach
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Agnieszka Kierzkowska
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|