1
|
Rejas-González R, Montero-Calle A, Pastora Salvador N, Crespo Carballés MJ, Ausín-González E, Sánchez-Naves J, Pardo Calderón S, Barderas R, Guzman-Aranguez A. Unraveling the nexus of oxidative stress, ocular diseases, and small extracellular vesicles to identify novel glaucoma biomarkers through in-depth proteomics. Redox Biol 2024; 77:103368. [PMID: 39326071 PMCID: PMC11462071 DOI: 10.1016/j.redox.2024.103368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic ocular pathologies such as cataracts and glaucoma are emerging as an important problem for public health due to the changes in lifestyle and longevity. These age-related ocular diseases are largely mediated by oxidative stress. Small extracellular vesicles (sEVs) are involved in cell-to-cell communication and transport. There is an increasing interest about the function of small extracellular vesicles (sEVs) in the eye. However, the proteome content and characterization of sEVs released by ocular cells under pathological conditions are not yet well known. Here, we aimed to analyze the protein profile of sEVs and the intracellular protein content from two ocular cell lines (lens epithelial cells and retinal ganglion cells) exposed to oxidative stress to identify altered proteins that could serve as potential diagnostic biomarkers. The protein content was analyzed by quantitative mass spectrometry-based proteomics. Validation was performed by WB and ELISA using cell extracts and aqueous humor from cataract and glaucoma patients. After data analysis, 176 and 7 dysregulated proteins with an expression ratio≥1.5 were identified in lens epithelial cells' protein extract and sEVs, respectively, upon oxidative stress induction. In retinal ganglion cells, oxidative stress induction resulted in the dysregulation of 1033 proteins in cell extracts and 9 proteins in sEVs. In addition, by WB and ELISA, the dysregulation of proteins was mostly confirmed in aqueous humor samples from cataract or glaucoma patients in comparison to ICL individuals, with RAD23B showing high glaucoma diagnostic ability. Importantly, this work expands the knowledge of the proteome characterization of cataracts and glaucoma and provides new potential diagnostic glaucoma biomarkers.
Collapse
Affiliation(s)
- Raquel Rejas-González
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | | | | | - Emma Ausín-González
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | | | - Sara Pardo Calderón
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), 28029, Madrid, Spain.
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain.
| |
Collapse
|
2
|
Chen H, Fang Y, Dai S, Jiang K, Shen L, Zhao J, Huang K, Zhou X, Ding K. Characterization and proteomic analysis of plasma-derived small extracellular vesicles in locally advanced rectal cancer patients. Cell Oncol (Dordr) 2024; 47:1995-2009. [PMID: 39162991 DOI: 10.1007/s13402-024-00983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Neoadjuvant chemoradiotherapy (nCRT) stands as a pivotal therapeutic approach for locally advanced rectal cancer (LARC), yet the absence of a reliable biomarker to forecast its efficacy remains a challenge. Thus, this study aimed to assess whether the proteomic compositions of small extracellular vesicles (sEVs) might offer predictive insights into nCRT response among patients with LARC, while also delving into the proteomic alterations within sEVs post nCRT. METHODS Plasma samples were obtained from LARC patients both pre- and post-nCRT. Plasma-derived sEVs were isolated utilizing the TIO2-based method, followed by LC-MS/MS-based proteomic analysis. Subsequently, pathway enrichment analysis was performed to the Differentially Expressed Proteins (DEPs). Additionally, ROC curves were generated to evaluate the predictive potential of sEV proteins in determining nCRT response. Public databases were interrogated to identify sEV protein-associated genes that are correlated with the response to nCRT in LARC. RESULTS A total of 16 patients were enrolled. Among them, 8 patients achieved a pathological complete response (good responders, GR), while the remaining 8 did not achieve a complete response (poor responders, PR). Our analysis of pretreatment plasma-derived sEVs revealed 67 significantly up-regulated DEPs and 9 significantly down-regulated DEPs. Notably, PROC (AUC: 0.922), F7 (AUC: 0.953) and AZU1 (AUC: 0.906) demonstrated high AUC values and significant differences (P value < 0.05) in discriminating between GR and PR patients. Furthermore, a signature consisting of 5 sEV protein-associated genes (S100A6, ENO1, MIF, PRDX6 and MYL6) was capable of predicting the response to nCRT, yielding an AUC of 0.621(95% CI: 0.454-0.788). Besides, this 5-sEV protein-associated gene signature enabled stratification of patients into low- and high-risk group, with the low-risk group demonstrating a longer overall survival in the testing set (P = 0.048). Moreover, our investigation identified 11 significantly up-regulated DEPs and 31 significantly down-regulated DEPs when comparing pre- and post-nCRT proteomic profiles. GO analysis unveiled enrichment in the regulation of phospholipase A2 activity. CONCLUSIONS Differential expression of sEV proteins distinguishes between GR and PR patients and holds promise as predictive markers for nCRT response and prognosis in patients with LARC. Furthermore, our findings highlight substantial alterations in sEV protein composition following nCRT.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China.
- Anhui Hospital of the Second Affiliated Hospital, Zhejiang University School of Medicine, Bengbu, 233000, China.
| | - Yimin Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siqi Dai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Jiang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Shen
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Zhao
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Hospital of the Second Affiliated Hospital, Zhejiang University School of Medicine, Bengbu, 233000, China
| | - Kanghua Huang
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhou
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Colorectal Surgery (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Montero-Calle A, Garranzo-Asensio M, Moreno-Casbas MT, Campuzano S, Barderas R. Autoantibodies in cancer: a systematic review of their clinical role in the most prevalent cancers. Front Immunol 2024; 15:1455602. [PMID: 39234247 PMCID: PMC11371560 DOI: 10.3389/fimmu.2024.1455602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Although blood autoantibodies were initially associated with autoimmune diseases, multiple evidence have been accumulated showing their presence in many types of cancer. This has opened their use in clinics, since cancer autoantibodies might be useful for early detection, prognosis, and monitoring of cancer patients. In this review, we discuss the different techniques available for their discovery and validation. Additionally, we discuss here in detail those autoantibody panels verified in at least two different reports that should be more likely to be specific of each of the four most incident cancers. We also report the recent developed kits for breast and lung cancer detection mostly based on autoantibodies and the identification of novel therapeutic targets because of the screening of the cancer humoral immune response. Finally, we discuss unsolved issues that still need to be addressed for the implementation of cancer autoantibodies in clinical routine for cancer diagnosis, prognosis, and/or monitoring.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Maria Teresa Moreno-Casbas
- Investén-isciii, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Rejas-González R, Montero-Calle A, Valverde A, Salvador NP, Carballés MJC, Ausín-González E, Sánchez-Naves J, Campuzano S, Barderas R, Guzman-Aranguez A. Proteomics Analyses of Small Extracellular Vesicles of Aqueous Humor: Identification and Validation of GAS6 and SPP1 as Glaucoma Markers. Int J Mol Sci 2024; 25:6995. [PMID: 39000104 PMCID: PMC11241616 DOI: 10.3390/ijms25136995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Cataracts and glaucoma account for a high percentage of vision loss and blindness worldwide. Small extracellular vesicles (sEVs) are released into different body fluids, including the eye's aqueous humor. Information about their proteome content and characterization in ocular pathologies is not yet well established. In this study, aqueous humor sEVs from healthy individuals, cataracts, and glaucoma patients were studied, and their specific protein profiles were characterized. Moreover, the potential of identified proteins as diagnostic glaucoma biomarkers was evaluated. The protein content of sEVs from patients' aqueous humor with cataracts and glaucoma compared to healthy individuals was analyzed by quantitative proteomics. Validation was performed by western blot (WB) and ELISA. A total of 828 peptides and 192 proteins were identified and quantified. After data analysis with the R program, 8 significantly dysregulated proteins from aqueous humor sEVs in cataracts and 16 in glaucoma showed an expression ratio ≥ 1.5. By WB and ELISA using directly aqueous humor samples, the dysregulation of 9 proteins was mostly confirmed. Importantly, GAS6 and SPP1 showed high diagnostic ability of glaucoma, which in combination allowed for discriminating glaucoma patients from control individuals with an area under the curve of 76.1% and a sensitivity of 65.6% and a specificity of 87.7%.
Collapse
Affiliation(s)
- Raquel Rejas-González
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (R.R.-G.); (A.M.-C.)
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (R.R.-G.); (A.M.-C.)
| | - Alejandro Valverde
- Analytical Chemistry Department, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain; (A.V.); (S.C.)
| | - Natalia Pastora Salvador
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (N.P.S.); (M.J.C.C.); (E.A.-G.)
| | - María José Crespo Carballés
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (N.P.S.); (M.J.C.C.); (E.A.-G.)
| | - Emma Ausín-González
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (N.P.S.); (M.J.C.C.); (E.A.-G.)
| | | | - Susana Campuzano
- Analytical Chemistry Department, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, 28040 Madrid, Spain; (A.V.); (S.C.)
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain; (R.R.-G.); (A.M.-C.)
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| |
Collapse
|
5
|
Campuzano S, Barderas R, Moreno-Casbas MT, Almeida Á, Pingarrón JM. Pursuing precision in medicine and nutrition: the rise of electrochemical biosensing at the molecular level. Anal Bioanal Chem 2024; 416:2151-2172. [PMID: 37420009 PMCID: PMC10951035 DOI: 10.1007/s00216-023-04805-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
In the era that we seek personalization in material things, it is becoming increasingly clear that the individualized management of medicine and nutrition plays a key role in life expectancy and quality of life, allowing participation to some extent in our welfare and the use of societal resources in a rationale and equitable way. The implementation of precision medicine and nutrition are highly complex challenges which depend on the development of new technologies able to meet important requirements in terms of cost, simplicity, and versatility, and to determine both individually and simultaneously, almost in real time and with the required sensitivity and reliability, molecular markers of different omics levels in biofluids extracted, secreted (either naturally or stimulated), or circulating in the body. Relying on representative and pioneering examples, this review article critically discusses recent advances driving the position of electrochemical bioplatforms as one of the winning horses for the implementation of suitable tools for advanced diagnostics, therapy, and precision nutrition. In addition to a critical overview of the state of the art, including groundbreaking applications and challenges ahead, the article concludes with a personal vision of the imminent roadmap.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Rodrigo Barderas
- UFIEC, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Maria Teresa Moreno-Casbas
- Nursing and Healthcare Research Unit (Investén-isciii), Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángeles Almeida
- Instituto de Biología Funcional y Genómica, CSIC, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
6
|
Gill SS, Gill RK, Sobti RC. Point of Care Molecular Diagnostics in Cancer. HANDBOOK OF ONCOBIOLOGY: FROM BASIC TO CLINICAL SCIENCES 2024:259-296. [DOI: 10.1007/978-981-99-6263-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Montero-Calle A, Jiménez de Ocaña S, Benavente-Naranjo R, Rejas-González R, Bartolomé RA, Martínez-Useros J, Sanz R, Dziaková J, Fernández-Aceñero MJ, Mendiola M, Casal JI, Peláez-García A, Barderas R. Functional Proteomics Characterization of the Role of SPRYD7 in Colorectal Cancer Progression and Metastasis. Cells 2023; 12:2548. [PMID: 37947626 PMCID: PMC10648221 DOI: 10.3390/cells12212548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
SPRY domain-containing protein 7 (SPRYD7) is a barely known protein identified via spatial proteomics as being upregulated in highly metastatic-to-liver KM12SM colorectal cancer (CRC) cells in comparison to its isogenic poorly metastatic KM12C CRC cells. Here, we aimed to analyze SPRYD7's role in CRC via functional proteomics. Through immunohistochemistry, the overexpression of SPRYD7 was observed to be associated with the poor survival of CRC patients and with an aggressive and metastatic phenotype. Stable SPRYD7 overexpression was performed in KM12C and SW480 poorly metastatic CRC cells and in their isogenic highly metastatic-to-liver-KM12SM-and-to-lymph-nodes SW620 CRC cells, respectively. Upon upregulation of SPRYD7, in vitro and in vivo functional assays confirmed a key role of SPRYD7 in the invasion and migration of CRC cells and in liver homing and tumor growth. Additionally, transient siRNA SPRYD7 silencing allowed us to confirm in vitro functional results. Furthermore, SPRYD7 was observed as an inductor of angiogenesis. In addition, the dysregulated SPRYD7-associated proteome and SPRYD7 interactors were elucidated via 10-plex TMT quantitative proteins, immunoproteomics, and bioinformatics. After WB validation, the biological pathways associated with the stable overexpression of SPRYD7 were visualized. In conclusion, it was demonstrated here that SPRYD7 is a novel protein associated with CRC progression and metastasis. Thus, SPRYD7 and its interactors might be of relevance in identifying novel therapeutic targets for advanced CRC.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Sofía Jiménez de Ocaña
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Ruth Benavente-Naranjo
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Raquel Rejas-González
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Rubén A. Bartolomé
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain;
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Rodrigo Sanz
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain; (R.S.); (J.D.)
| | - Jana Dziaková
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain; (R.S.); (J.D.)
| | | | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (M.M.); (A.P.-G.)
| | - José Ignacio Casal
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain;
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (M.M.); (A.P.-G.)
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| |
Collapse
|
8
|
Montero-Calle A, Garranzo-Asensio M, Rejas-González R, Feliu J, Mendiola M, Peláez-García A, Barderas R. Benefits of FAIMS to Improve the Proteome Coverage of Deteriorated and/or Cross-Linked TMT 10-Plex FFPE Tissue and Plasma-Derived Exosomes Samples. Proteomes 2023; 11:35. [PMID: 37987315 PMCID: PMC10661291 DOI: 10.3390/proteomes11040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
The proteome characterization of complex, deteriorated, or cross-linked protein mixtures as paired clinical FFPE or exosome samples isolated from low plasma volumes (250 µL) might be a challenge. In this work, we aimed at investigating the benefits of FAIMS technology coupled to the Orbitrap Exploris 480 mass spectrometer for the TMT quantitative proteomics analyses of these complex samples in comparison to the analysis of protein extracts from cells, frozen tissue, and exosomes isolated from large volume plasma samples (3 mL). TMT experiments were performed using a two-hour gradient LC-MS/MS with or without FAIMS and two compensation voltages (CV = -45 and CV = -60). In the TMT experiments of cells, frozen tissue, or exosomes isolated from large plasma volumes (3 mL) with FAIMS, a limited increase in the number of identified and quantified proteins accompanied by a decrease in the number of peptides identified and quantified was observed. However, we demonstrated here a noticeable improvement (>100%) in the number of peptide and protein identifications and quantifications for the plasma exosomes isolated from low plasma volumes (250 µL) and FFPE tissue samples in TMT experiments with FAIMS in comparison to the LC-MS/MS analysis without FAIMS. Our results highlight the potential of mass spectrometry analyses with FAIMS to increase the depth into the proteome of complex samples derived from deteriorated, cross-linked samples and/or those where the material was scarce, such as FFPE and plasma-derived exosomes from low plasma volumes (250 µL), which might aid in the characterization of their proteome and proteoforms and in the identification of dysregulated proteins that could be used as biomarkers.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.G.-A.); (R.R.-G.)
| | - María Garranzo-Asensio
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.G.-A.); (R.R.-G.)
| | - Raquel Rejas-González
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.G.-A.); (R.R.-G.)
| | - Jaime Feliu
- Translational Oncology Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain;
- Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28046 Madrid, Spain;
| | - Marta Mendiola
- Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28046 Madrid, Spain;
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain;
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain;
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.G.-A.); (R.R.-G.)
| |
Collapse
|
9
|
Campuzano S, Pingarrón JM. Electrochemical Affinity Biosensors: Pervasive Devices with Exciting Alliances and Horizons Ahead. ACS Sens 2023; 8:3276-3293. [PMID: 37534629 PMCID: PMC10521145 DOI: 10.1021/acssensors.3c01172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Electrochemical affinity biosensors are evolving at breakneck speed, strengthening and colonizing more and more niches and drawing unimaginable roadmaps that increasingly make them protagonists of our daily lives. They achieve this by combining their intrinsic attributes with those acquired by leveraging the significant advances that occurred in (nano)materials technology, bio(nano)materials and nature-inspired receptors, gene editing and amplification technologies, and signal detection and processing techniques. The aim of this Perspective is to provide, with the support of recent representative and illustrative literature, an updated and critical view of the repertoire of opportunities, innovations, and applications offered by electrochemical affinity biosensors fueled by the key alliances indicated. In addition, the imminent challenges that these biodevices must face and the new directions in which they are envisioned as key players are discussed.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica,
Facultad de Ciencias Químicas, Universidad
Complutense de Madrid, 28040 Madrid, España
| | - José M. Pingarrón
- Departamento de Química Analítica,
Facultad de Ciencias Químicas, Universidad
Complutense de Madrid, 28040 Madrid, España
| |
Collapse
|
10
|
Montero-Calle A, López-Janeiro Á, Mendes ML, Perez-Hernandez D, Echevarría I, Ruz-Caracuel I, Heredia-Soto V, Mendiola M, Hardisson D, Argüeso P, Peláez-García A, Guzman-Aranguez A, Barderas R. In-depth quantitative proteomics analysis revealed C1GALT1 depletion in ECC-1 cells mimics an aggressive endometrial cancer phenotype observed in cancer patients with low C1GALT1 expression. Cell Oncol (Dordr) 2023; 46:697-715. [PMID: 36745330 PMCID: PMC10205863 DOI: 10.1007/s13402-023-00778-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) is the most common cancer of the female reproductive organs. Despite the good overall prognosis of most low-grade ECs, FIGO I and FIGO II patients might experience tumor recurrence and worse prognosis. The study of alterations related to EC pathogenesis might help to get insights into underlying mechanisms involved in EC development and progression. METHODS Core tumoral samples were used to investigate the role of C1GALT1 in EC by immunohistochemistry (IHC). ECC-1 cells were used as endometrioid EC model to investigate the effect of C1GALT1 depletion using C1GALT1 specific shRNAs. SILAC quantitative proteomics analyses and cell-based assays, PCR, qPCR, WB, dot-blot and IHC analyses were used to identify, quantify and validate dysregulation of proteins. RESULTS Low C1GALT1 protein expression levels associate to a more aggressive phenotype of EC. Out of 5208 proteins identified and quantified by LC-MS/MS, 100 proteins showed dysregulation (log2fold-change ≥ 0.58 or ≤-0.58) in the cell protein extracts and 144 in the secretome of C1GALT1 depleted ECC-1 cells. Nine dysregulated proteins were validated. Bioinformatics analyses pointed out to an increase in pathways associated with an aggressive phenotype. This finding was corroborated by loss-of-function cell-based assays demonstrating higher proliferation, invasion, migration, colony formation and angiogenesis capacity in C1GALT1 depleted cells. These effects were associated to the overexpression of ANXA1, as demonstrated by ANXA1 transient silencing cell-based assays, and thus, correlating C1GALT and ANXA1 protein expression and biological effects. Finally, the negative protein expression correlation found by proteomics between C1GALT1 and LGALS3 was confirmed by IHC. CONCLUSION C1GALT1 stably depleted ECC-1 cells mimic an EC aggressive phenotype observed in patients and might be useful for the identification and validation of EC markers of progression.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | | | - Marta L Mendes
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Daniel Perez-Hernandez
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Irene Echevarría
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | | | - Victoria Heredia-Soto
- Translational Oncology, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
| | - Marta Mendiola
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
| | - David Hardisson
- Department of Pathology, Hospital Universitario La Paz, 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Pablo Argüeso
- Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain.
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain.
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
- Functional Proteomics Unit, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
11
|
Montero-Calle A, Coronel R, Garranzo-Asensio M, Solís-Fernández G, Rábano A, de Los Ríos V, Fernández-Aceñero MJ, Mendes ML, Martínez-Useros J, Megías D, Moreno-Casbas MT, Peláez-García A, Liste I, Barderas R. Proteomics analysis of prefrontal cortex of Alzheimer's disease patients revealed dysregulated proteins in the disease and novel proteins associated with amyloid-β pathology. Cell Mol Life Sci 2023; 80:141. [PMID: 37149819 PMCID: PMC11073180 DOI: 10.1007/s00018-023-04791-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive, chronic, and neurodegenerative disease, and the most common cause of dementia worldwide. Currently, the mechanisms underlying the disease are far from being elucidated. Thus, the study of proteins involved in its pathogenesis would allow getting further insights into the disease and identifying new markers for AD diagnosis. METHODS We aimed here to analyze protein dysregulation in AD brain by quantitative proteomics to identify novel proteins associated with the disease. 10-plex TMT (tandem mass tags)-based quantitative proteomics experiments were performed using frozen tissue samples from the left prefrontal cortex of AD patients and healthy individuals and vascular dementia (VD) and frontotemporal dementia (FTD) patients as controls (CT). LC-MS/MS analyses were performed using a Q Exactive mass spectrometer. RESULTS In total, 3281 proteins were identified and quantified using MaxQuant. Among them, after statistical analysis with Perseus (p value < 0.05), 16 and 155 proteins were defined as upregulated and downregulated, respectively, in AD compared to CT (Healthy, FTD and VD) with an expression ratio ≥ 1.5 (upregulated) or ≤ 0.67 (downregulated). After bioinformatics analysis, ten dysregulated proteins were selected as more prone to be associated with AD, and their dysregulation in the disease was verified by qPCR, WB, immunohistochemistry (IHC), immunofluorescence (IF), pull-down, and/or ELISA, using tissue and plasma samples of AD patients, patients with other dementias, and healthy individuals. CONCLUSIONS We identified and validated novel AD-associated proteins in brain tissue that should be of further interest for the study of the disease. Remarkably, PMP2 and SCRN3 were found to bind to amyloid-β (Aβ) fibers in vitro, and PMP2 to associate with Aβ plaques by IF, whereas HECTD1 and SLC12A5 were identified as new potential blood-based biomarkers of the disease.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - María Garranzo-Asensio
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Guillermo Solís-Fernández
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, Heverlee, 3001, Louvain, Belgium
| | - Alberto Rábano
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, E-28031, Madrid, Spain
| | | | | | - Marta L Mendes
- Department of Infection and Immunity, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-Universidad Autónoma de Madrid, E-28040, Madrid, Spain
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, E-28922, Madrid, Spain
| | - Diego Megías
- Advanced Optical Microscopy Unit, UCCTs, Instituto de Salud Carlos III (ISCIII), E-28220, Majadahonda, Madrid, Spain
| | | | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), E-28046, Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Rodrigo Barderas
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain.
| |
Collapse
|
12
|
Montero-Calle A, Garranzo-Asensio M, Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Poves C, Dziaková J, Sanz R, Díaz del Arco C, Pingarrón JM, Fernández-Aceñero MJ, Campuzano S, Barderas R. p53 and p63 Proteoforms Derived from Alternative Splicing Possess Differential Seroreactivity in Colorectal Cancer with Distinct Diagnostic Ability from the Canonical Proteins. Cancers (Basel) 2023; 15:cancers15072102. [PMID: 37046764 PMCID: PMC10092954 DOI: 10.3390/cancers15072102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most frequent cause of cancer-related death worldwide. The detection in plasma samples of autoantibodies against specific tumor-associated antigens has been demonstrated to be useful for the early diagnosis of CRC by liquid biopsy. However, new studies related to the humoral immune response in cancer are needed to enable blood-based diagnosis of the disease. Here, our aim was to characterize the humoral immune response associated with the different p53 and p63 proteoforms derived from alternative splicing and previously described as aberrantly expressed in CRC. Thus, here we investigated the diagnostic ability of the twelve p53 proteoforms and the eight p63 proteoforms described to date, and their specific N-terminal and C-terminal end peptides, by means of luminescence HaloTag beads immunoassays. Full-length proteoforms or specific peptides were cloned as HaloTag fusion proteins and their seroreactivity analyzed using plasma from CRC patients at stages I-IV (n = 31), individuals with premalignant lesions (n = 31), and healthy individuals (n = 48). p53γ, Δ40p53β, Δ40p53γ, Δ133p53γ, Δ160p53γ, TAp63α, TAp63δ, ΔNp63α, and ΔNp63δ, together with the specific C-terminal end α and δ p63 peptides, were found to be more seroreactive against plasma from CRC patients and/or individuals with premalignant lesions than from healthy individuals. In addition, ROC (receiver operating characteristic) curves revealed a high diagnostic ability of those p53 and p63 proteoforms to detect CRC and premalignant individuals (AUC higher than 85%). Finally, electrochemical biosensing platforms were employed in POC-like devices to investigate their usefulness for CRC detection using selected p53 and p63 proteoforms. Our results demonstrate not only the potential of these biosensors for the simultaneous analysis of proteoforms’ seroreactivity, but also their convenience and versatility for the clinical detection of CRC by liquid biopsy. In conclusion, we here show that p53 and p63 proteoforms possess differential seroreactivity in CRC patients in comparison to controls, distinctive from canonical proteins, which should improve the diagnostic panels for obtaining a blood-based biomarker signature for CRC detection.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (A.M.-C.); (M.G.-A.)
| | - María Garranzo-Asensio
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (A.M.-C.); (M.G.-A.)
| | - Rebeca M. Torrente-Rodríguez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | - Víctor Ruiz-Valdepeñas Montiel
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | - Carmen Poves
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain;
| | - Jana Dziaková
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain
| | - Rodrigo Sanz
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain
| | - Cristina Díaz del Arco
- Surgical Pathology Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain (M.J.F.-A.)
| | - José Manuel Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | | | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (A.M.-C.); (M.G.-A.)
- Correspondence:
| |
Collapse
|
13
|
Bracaglia S, Ranallo S, Ricci F. Electrochemical Cell-Free Biosensors for Antibody Detection. Angew Chem Int Ed Engl 2023; 62:e202216512. [PMID: 36533529 DOI: 10.1002/anie.202216512] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
We report here the development of an electrochemical cell-free biosensor for antibody detection directly in complex sample matrices with high sensitivity and specificity that is particularly suitable for point-of-care applications. The approach is based on the use of programmable antigen-conjugated gene circuits that, upon recognition of a specific target antibody, trigger the cell-free transcription of an RNA sequence that can be consequently detected using a redox-modified probe strand immobilized to a disposable electrode. The platform couples the features of high sensitivity and specificity of cell-free systems and the strength of cost-effectiveness and possible miniaturization provided by the electrochemical detection. We demonstrate the sensitive, specific, selective, and multiplexed detection of three different antibodies, including the clinically-relevant Anti-HA antibody.
Collapse
Affiliation(s)
- Sara Bracaglia
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Simona Ranallo
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
14
|
Arévalo B, Blázquez M, Serafín V, Montero-Calle A, Calero M, Valverde A, Barderas R, Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Unraveling autoimmune and neurodegenerative diseases by amperometric serological detection of antibodies against aquaporin-4. Bioelectrochemistry 2022; 144:108041. [PMID: 34929532 DOI: 10.1016/j.bioelechem.2021.108041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
This work reports the first electroanalytical bioplatform to date for the determination of antibodies against aquaporin-4 (AQP4-Abs), whose serum level is considered as relevant biomarker for certain autoimmune diseases. The bioplatform relies on the use of magnetic microparticles modified with the biotinylated protein for the capture of specific antibodies. The captured IgGs are enzymatically labelled with a secondary antibody conjugated to the horseradish peroxidase (HRP) enzyme. Amperometric transduction is performed using the H2O2/hydroquinone (HQ) system, which results in a cathodic current variation directly proportional to the concentration of the target antibodies. The evaluation of the analytical and operational characteristics of the developed bioplatform shows that it is competitive in terms of sensitivity with the only biosensor reported to date as well as with the commercially available ELISA kits. The achieved limit of detection value is 8.8 pg mL-1. In addition, compared to ELISA kits, the developed bioplatform is advantageous in terms of cost and point of care operation ability. The bioplatform was applied to the analysis of control serum samples with known AQP4-Abs contents as well as of sera from healthy individuals and patients diagnosed with Systemic Lupus Erythematosus (SLE) and Alzheimer (AD) diseases, providing results in agreement with the ELISA methodology.
Collapse
Affiliation(s)
- Beatriz Arévalo
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014-Madrid, Spain
| | - Marina Blázquez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014-Madrid, Spain
| | - Verónica Serafín
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014-Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220-Madrid, Spain
| | - Miguel Calero
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220-Madrid, Spain; Alzheimer's Center Reina Sofía Foundation -CIEN Foundation and CIBERNED, Institute of Health Carlos III, Majadahonda, 28220-Madrid, Spain
| | - Alejandro Valverde
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014-Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220-Madrid, Spain
| | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014-Madrid, Spain.
| | - Paloma Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014-Madrid, Spain.
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014-Madrid, Spain
| |
Collapse
|
15
|
Biosensors as diagnostic tools in clinical applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188726. [DOI: 10.1016/j.bbcan.2022.188726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
|
16
|
Solís-Fernández G, Montero-Calle A, Martínez-Useros J, López-Janeiro Á, de los Ríos V, Sanz R, Dziakova J, Milagrosa E, Fernández-Aceñero MJ, Peláez-García A, Casal JI, Hofkens J, Rocha S, Barderas R. Spatial Proteomic Analysis of Isogenic Metastatic Colorectal Cancer Cells Reveals Key Dysregulated Proteins Associated with Lymph Node, Liver, and Lung Metastasis. Cells 2022; 11:cells11030447. [PMID: 35159257 PMCID: PMC8834500 DOI: 10.3390/cells11030447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Metastasis is the primary cause of colorectal cancer (CRC) death. The liver and lung, besides adjacent lymph nodes, are the most common sites of metastasis. Here, we aimed to study the lymph nodes, liver, and lung CRC metastasis by quantitative spatial proteomics analysis using CRC cell-based models that recapitulate these metastases. The isogenic KM12 cell system composed of the non-metastatic KM12C cells, liver metastatic KM12SM cells, and liver and lung metastatic KM12L4a cells, and the isogenic non-metastatic SW480 and lymph nodes metastatic SW620 cells, were used. Cells were fractionated to study by proteomics five subcellular fractions corresponding to cytoplasm, membrane, nucleus, chromatin-bound proteins, and cytoskeletal proteins, and the secretome. Trypsin digested extracts were labeled with TMT 11-plex and fractionated prior to proteomics analysis on a Q Exactive. We provide data on protein abundance and localization of 4710 proteins in their different subcellular fractions, depicting dysregulation of proteins in abundance and/or localization in the most common sites of CRC metastasis. After bioinformatics, alterations in abundance and localization for selected proteins from diverse subcellular localizations were validated via WB, IF, IHC, and ELISA using CRC cells, patient tissues, and plasma samples. Results supported the relevance of the proteomics results in an actual CRC scenario. It was particularly relevant that the measurement of GLG1 in plasma showed diagnostic ability of advanced stages of the disease, and that the mislocalization of MUC5AC and BAIAP2 in the nucleus and membrane, respectively, was significantly associated with poor prognosis of CRC patients. Our results demonstrate that the analysis of cell extracts dilutes protein alterations in abundance in specific localizations that might only be observed studying specific subcellular fractions, as here observed for BAIAP2, GLG1, PHYHIPL, TNFRSF10A, or CDKN2AIP, which are interesting proteins that should be further analyzed in CRC metastasis.
Collapse
Affiliation(s)
- Guillermo Solís-Fernández
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute—Fundacion Jimenez Diaz University Hospital, 28040 Madrid, Spain;
| | - Álvaro López-Janeiro
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (Á.L.-J.); (A.P.-G.)
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas (CIB-CSIC), 28039 Madrid, Spain;
| | - Rodrigo Sanz
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | - Jana Dziakova
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | - Elena Milagrosa
- Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (R.S.); (J.D.); (E.M.); (M.J.F.-A.)
| | | | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (Á.L.-J.); (A.P.-G.)
| | - José Ignacio Casal
- Centro de Investigaciones Biológicas (CIB-CSIC), Department of Molecular Biomedicine, 28039 Madrid, Spain;
| | - Johan Hofkens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
| | - Susana Rocha
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (G.S.-F.); (J.H.); (S.R.)
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain;
- Correspondence: ; Tel.: +34-918223231
| |
Collapse
|
17
|
Chua JKE, Lim J, Foong LH, Mok CY, Tan HY, Tung XY, Ramasamy TS, Govindasamy V, Then KY, Das AK, Cheong SK. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Progress and Remaining Hurdles in Developing Regulatory Compliant Quality Control Assays. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:191-211. [DOI: 10.1007/5584_2022_728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
San Segundo-Acosta P, Montero-Calle A, Jernbom-Falk A, Alonso-Navarro M, Pin E, Andersson E, Hellström C, Sánchez-Martínez M, Rábano A, Solís-Fernández G, Peláez-García A, Martínez-Useros J, Fernández-Aceñero MJ, Månberg A, Nilsson P, Barderas R. Multiomics Profiling of Alzheimer's Disease Serum for the Identification of Autoantibody Biomarkers. J Proteome Res 2021; 20:5115-5130. [PMID: 34628858 DOI: 10.1021/acs.jproteome.1c00630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New biomarkers of Alzheimer's disease (AD) with a diagnostic value in preclinical and prodromal stages are urgently needed. AD-related serum autoantibodies are potential candidate biomarkers. Here, we aimed at identifying AD-related serum autoantibodies using protein microarrays and mass spectrometry-based methods. To this end, an untargeted complementary screening using high-density (42,100 antigens) and low-density (384 antigens) planar protein-epitope signature tag (PrEST) arrays and an immunoprecipitation protocol coupled to mass spectrometry analysis were used for serum autoantibody profiling. From the untargeted screening phase, 377 antigens corresponding to 338 proteins were selected for validation. Out of them, IVD, CYFIP1, and ADD2 seroreactivity was validated using 128 sera from AD patients and controls by PrEST-suspension bead arrays, and ELISA or luminescence Halotag-based bead immunoassay using full-length recombinant proteins. Importantly, IVD, CYFIP1, and ADD2 showed in combination a noticeable AD diagnostic ability. Moreover, IVD protein abundance in the prefrontal cortex was significantly two-fold higher in AD patients than in controls by western blot and immunohistochemistry, whereas CYFIP1 and ADD2 were significantly down-regulated in AD patients. The panel of AD-related autoantigens identified by a comprehensive multiomics approach may provide new insights of the disease and should help in the blood-based diagnosis of Alzheimer's disease. Mass spectrometry raw data are available in the ProteomeXchange database with the access number PXD028392.
Collapse
Affiliation(s)
- Pablo San Segundo-Acosta
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - August Jernbom-Falk
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Miren Alonso-Navarro
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - Elisa Pin
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Eni Andersson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Cecilia Hellström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | | | - Alberto Rábano
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid 28031, Spain
| | | | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), Madrid 28046, Spain
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-Fundacion Jimenez Diaz University Hospital, Madrid 28040, Spain
| | - María Jesús Fernández-Aceñero
- Servicio de Anatomía Patológica Hospital Universitario Clínico San Carlos, Departamento de Anatomía Patológica, Facultad de Medicina, Complutense University of Madrid, Madrid 28040, Spain
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| |
Collapse
|