1
|
Zeng H, Li S, Wang K, Dai Y, Sun L, Gao Y, Yi S, Li J, Xu S, Xie G, Zhu Y, Zhao Y, Qin M. BvCGT1-mediated differential distribution of flavonoid C-glycosides contributes to plant's response to UV-B stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:354-369. [PMID: 39158506 DOI: 10.1111/tpj.16991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
C-glycosides are a predominant class of flavonoids that demonstrate diverse medical properties and plant physiological functions. The chemical stability, structural diversity, and differential aboveground distribution of these compounds in plants make them ideal protectants. However, little is known about the transcriptional regulatory mechanisms that play these diverse roles in plant physiology. In this study, chard was selected from 69 families for its significantly different flavonoid C-glycosides distributions between the aboveground and underground parts to investigate the role and regulatory mechanism of flavonoid C-glycosides in plants. Our results indicate that flavonoid C-glycosides are affected by various stressors, especially UV-B. Through cloning and validation of key biosynthetic genes of flavonoid C-glycosides in chard (BvCGT1), we observed significant effects induced by UV-B radiation. This finding was further confirmed by resistance testing in BvCGT1 silenced chard lines and in Arabidopsis plants with BvCGT1 overexpression. Yeast one-hybrid and dual-luciferase assays were employed to determine the underlying regulatory mechanisms of BvCGT1 in withstanding UV-B stress. These results indicate a potential regulatory role of BvDof8 and BvDof13 in modulating flavonoid C-glycosides content, through their influence on BvCGT1. In conclusion, we have effectively demonstrated the regulation of BvCGT1 by BvDof8 and BvDof13, highlighting their crucial role in plant adaptation to UV-B radiation. Additionally, we have outlined a comprehensive transcriptional regulatory network involving BvDof8 and BvDof13 in response to UV-B radiation.
Collapse
Affiliation(s)
- Huihui Zeng
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuai Li
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kaixuan Wang
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yiqun Dai
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lanlan Sun
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yue Gao
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shanyong Yi
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Junde Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Zhu
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 211198, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 211198, China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
2
|
Ma Y, Su H, Li W, Mao S, Feng Z, Qiu Y, Chen K, Chen Q, Wang H, Zhu Z. The hyaluronic acid-gelatin hierarchical hydrogel for osteoporotic bone defect repairment. Int J Biol Macromol 2024; 276:133821. [PMID: 38996892 DOI: 10.1016/j.ijbiomac.2024.133821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Osteoporotic bone defects are serious medical problems due to their sparse bone structure, difficulty in restoration and reconstruction, and high recurrence rates, which also result in heavy economic and social burdens. Herein, we developed a hierarchical hydrogel composed of alendronate sodium (AS)/Mg2+-loaded inverse opal methylpropenylated gelatin (GelMA) hydrogel microspheres (IOHM-AS-Mgs) within methylpropenylated poly(hyaluronic acid) (HAMA) for osteoporotic bone defect treatment. The IOHM-AS-Mgs displayed good cytocompatibility and cell adhesion and strongly stimulated osteogenesis at the transcriptomic and protein levels. When this treatment was applied to the osteoporotic bone defect area, HAMA was used to fix the microspheres. The results of the microcomputed tomography (micro-CT) and histological analyses indicated that the hierarchical hydrogel had the best therapeutic effect. Therefore, this hydrogel is a new candidate for osteoporotic bone defect treatment.
Collapse
Affiliation(s)
- Yanyu Ma
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Haiwen Su
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China; Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Wenhan Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Saihu Mao
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhenghua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Keng Chen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| | - Quanchi Chen
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China.
| |
Collapse
|
3
|
Qi J, Li X, Cao Y, Long Y, Lai J, Yao Y, Meng Y, Wang Y, Chen XD, Vankelecom H, Bian X, Cui W, Sun Y. Locationally activated PRP via an injectable dual-network hydrogel for endometrial regeneration. Biomaterials 2024; 309:122615. [PMID: 38759486 DOI: 10.1016/j.biomaterials.2024.122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Enhancing the effectiveness of platelet-rich plasma (PRP) for endometrial regeneration is challenging, due to its limited mechanical properties and burst release of growth factors. Here, we proposed an injectable interpenetrating dual-network hydrogel that can locationally activate PRP within the uterine cavity, sustained release growth factors and further address the insufficient therapeutic efficacy. Locational activation of PRP is achieved using the dual-network hydrogel. The phenylboronic acid (PBA) modified methacrylated hyaluronic acid (HAMA) dispersion chelates Ca2+ by carboxy groups and polyphenol groups, and in situ crosslinked with PRP-loaded polyvinyl alcohol (PVA) dispersion by dynamic borate ester bonds thus establishing the soft hydrogel. Subsequently, in situ photo-crosslinking technology is employed to enhance the mechanical performance of hydrogels by initiating free radical polymerization of carbon-carbon double bonds to form a dense network. The PRP-hydrogel significantly promoted the endometrial cell proliferation, exhibited strong pro-angiogenic effects, and down-regulated the expression of collagen deposition genes by inhibiting the TGF-β1-SMAD2/3 pathway in vitro. In vivo experiments using a rat intrauterine adhesion (IUA) model showed that the PRP-hydrogel significantly promoted endometrial regeneration and restored uterine functionality. Furthermore, rats treated with the PRP-hydrogel displayed an increase in the number of embryos, litter size, and birth rate, which was similar to normal rats. Overall, this injectable interpenetrating dual-network hydrogel, capable of locational activation of PRP, suggests a new therapeutic approach for endometrial repair.
Collapse
Affiliation(s)
- Jia Qi
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaoxiao Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yumeng Cao
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yijing Long
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Junliang Lai
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yejie Yao
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yiwen Meng
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuan Wang
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX, 78229, USA
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Xuejiao Bian
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Yun Sun
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
4
|
Majeed A, Afzal H, Maqsood K, Noureen A, Gul Z, Imran M, Afzal A, Khawar MB. Using carbohydrate-based polymers to facilitate testicular regeneration. Biol Cell 2024; 116:e2400013. [PMID: 38881160 DOI: 10.1111/boc.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
Male infertility is a significant global issue affecting 60-80 million people, with 40%-50% of cases linked to male issues. Exposure to radiation, drugs, sickness, the environment, and oxidative stress may result in testicular degeneration. Carbohydrate-based polymers (CBPs) restore testis differentiation and downregulate apoptosis genes. CBP has biodegradability, low cost, and wide availability, but is at risk of contamination and variations. CBP shows promise in wound healing, but more research is required before implementation in healthcare. Herein, we discuss the recent advances in engineering applications of CBP employed as scaffolds, drug delivery systems, immunomodulation, and stem cell therapy for testicular regeneration. Moreover, we emphasize the promising challenges warranted for future perspectives.
Collapse
Affiliation(s)
- Aneeqa Majeed
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences & Technology, University of Central Punjab, Lahore, Pakistan
| | - Kaleem Maqsood
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Amara Noureen
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Zaman Gul
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Center of Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences & Technology, University of Central Punjab, Lahore, Pakistan
- Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Liang Y, Shuai Q, Zhang X, Jin S, Guo Y, Yu Z, Xu X, Ao R, Peng Z, Lv H, He S, Wang C, Song G, Liu Z, Zhao H, Feng Q, Du R, Zheng B, Chen Z, Xie J. Incorporation of Decidual Stromal Cells Derived Exosomes in Sodium Alginate Hydrogel as an Innovative Therapeutic Strategy for Advancing Endometrial Regeneration and Reinstating Fertility. Adv Healthc Mater 2024; 13:e2303674. [PMID: 38315148 DOI: 10.1002/adhm.202303674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 02/07/2024]
Abstract
Intrauterine adhesion (IUA) stands as a prevalent medical condition characterized by endometrial fibrosis and scar tissue formation within the uterine cavity, resulting in infertility and, in severe cases, recurrent miscarriages. Cell therapy, especially with stem cells, offers an alternative to surgery, but concerns about uncontrolled differentiation and tumorigenicity limit its use. Exosomes, more stable and immunogenicity-reduced than parent cells, have emerged as a promising avenue for IUA treatment. In this study, a novel approach has been proposed wherein exosomes originating from decidual stromal cells (DSCs) are encapsulated within sodium alginate hydrogel (SAH) scaffolds to repair endometrial damage and restore fertility in a mouse IUA model. Current results demonstrate that in situ injection of DSC-derived exosomes (DSC-exos)/SAH into the uterine cavity has the capability to induce uterine angiogenesis, initiate mesenchymal-to-epithelial transformation (MET), facilitate collagen fiber remodeling and dissolution, promote endometrial regeneration, enhance endometrial receptivity, and contribute to the recovery of fertility. RNA sequencing and advanced bioinformatics analysis reveal miRNA enrichment in exosomes, potentially supporting endometrial repair. This finding elucidates how DSC-exos/SAH mechanistically fosters collagen ablation, endometrium regeneration, and fertility recovery, holding the potential to introduce a novel IUA treatment and offering invaluable insights into the realm of regenerative medicine.
Collapse
Affiliation(s)
- Yuxiang Liang
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Taiyuan, Shanxi, 030001, China
- Shanxi Key Laboratory of Human Disease and Animal Models, Experimental Animal Center of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qizhi Shuai
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Taiyuan, Shanxi, 030001, China
| | - Xiao Zhang
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Taiyuan, Shanxi, 030001, China
| | - Shanshan Jin
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Taiyuan, Shanxi, 030001, China
| | - Yuqian Guo
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Taiyuan, Shanxi, 030001, China
| | - Zhaowei Yu
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Taiyuan, Shanxi, 030001, China
| | - Xinrui Xu
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Taiyuan, Shanxi, 030001, China
| | - Ruifang Ao
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Taiyuan, Shanxi, 030001, China
| | - Zhiwei Peng
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Taiyuan, Shanxi, 030001, China
| | - Huimin Lv
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Taiyuan, Shanxi, 030001, China
- Department of Obstetrics and Gynecology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital), Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Sheng He
- Department of Radiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Chunfang Wang
- Shanxi Key Laboratory of Human Disease and Animal Models, Experimental Animal Center of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Guohua Song
- Shanxi Key Laboratory of Human Disease and Animal Models, Experimental Animal Center of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Zhizhen Liu
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Taiyuan, Shanxi, 030001, China
| | - Hong Zhao
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Taiyuan, Shanxi, 030001, China
| | - Qilong Feng
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Taiyuan, Shanxi, 030001, China
| | - Ruochen Du
- Shanxi Key Laboratory of Human Disease and Animal Models, Experimental Animal Center of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Bin Zheng
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Zhaoyang Chen
- Shanxi Key Laboratory of Human Disease and Animal Models, Experimental Animal Center of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jun Xie
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Taiyuan, Shanxi, 030001, China
| |
Collapse
|
6
|
Horvath-Pereira BDO, Almeida GHDR, da Silva Júnior LN, do Nascimento PG, Horvath Pereira BDO, Fireman JVBT, Pereira MLDRF, Carreira ACO, Miglino MA. Biomaterials for Testicular Bioengineering: How far have we come and where do we have to go? Front Endocrinol (Lausanne) 2023; 14:1085872. [PMID: 37008920 PMCID: PMC10060902 DOI: 10.3389/fendo.2023.1085872] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Traditional therapeutic interventions aim to restore male fertile potential or preserve sperm viability in severe cases, such as semen cryopreservation, testicular tissue, germ cell transplantation and testicular graft. However, these techniques demonstrate several methodological, clinical, and biological limitations, that impact in their results. In this scenario, reproductive medicine has sought biotechnological alternatives applied for infertility treatment, or to improve gamete preservation and thus increase reproductive rates in vitro and in vivo. One of the main approaches employed is the biomimetic testicular tissue reconstruction, which uses tissue-engineering principles and methodologies. This strategy pursues to mimic the testicular microenvironment, simulating physiological conditions. Such approach allows male gametes maintenance in culture or produce viable grafts that can be transplanted and restore reproductive functions. In this context, the application of several biomaterials have been proposed to be used in artificial biological systems. From synthetic polymers to decellularized matrixes, each biomaterial has advantages and disadvantages regarding its application in cell culture and tissue reconstruction. Therefore, the present review aims to list the progress that has been made and the continued challenges facing testicular regenerative medicine and the preservation of male reproductive capacity, based on the development of tissue bioengineering approaches for testicular tissue microenvironment reconstruction.
Collapse
Affiliation(s)
| | | | | | - Pedro Gabriel do Nascimento
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Centre for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Yang P, Ju Y, Hu Y, Xie X, Fang B, Lei L. Emerging 3D bioprinting applications in plastic surgery. Biomater Res 2023; 27:1. [PMID: 36597149 PMCID: PMC9808966 DOI: 10.1186/s40824-022-00338-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Plastic surgery is a discipline that uses surgical methods or tissue transplantation to repair, reconstruct and beautify the defects and deformities of human tissues and organs. Three-dimensional (3D) bioprinting has gained widespread attention because it enables fine customization of the implants in the patient's surgical area preoperatively while avoiding some of the adverse reactions and complications of traditional surgical approaches. In this paper, we review the recent research advances in the application of 3D bioprinting in plastic surgery. We first introduce the printing process and basic principles of 3D bioprinting technology, revealing the advantages and disadvantages of different bioprinting technologies. Then, we describe the currently available bioprinting materials, and dissect the rationale for special dynamic 3D bioprinting (4D bioprinting) that is achieved by varying the combination strategy of bioprinting materials. Later, we focus on the viable clinical applications and effects of 3D bioprinting in plastic surgery. Finally, we summarize and discuss the challenges and prospects for the application of 3D bioprinting in plastic surgery. We believe that this review can contribute to further development of 3D bioprinting in plastic surgery and provide lessons for related research.
Collapse
Affiliation(s)
- Pu Yang
- grid.452708.c0000 0004 1803 0208Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 People’s Republic of China
| | - Yikun Ju
- grid.452708.c0000 0004 1803 0208Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 People’s Republic of China
| | - Yue Hu
- grid.449525.b0000 0004 1798 4472School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000 People’s Republic of China
| | - Xiaoyan Xie
- grid.452708.c0000 0004 1803 0208Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011 People’s Republic of China
| | - Bairong Fang
- grid.452708.c0000 0004 1803 0208Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 People’s Republic of China
| | - Lanjie Lei
- grid.263826.b0000 0004 1761 0489School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 People’s Republic of China
| |
Collapse
|
8
|
RANDHAWA AAYUSHI, DEB DUTTA SAYAN, GANGULY KEYA, V. PATIL TEJAL, LUTHFIKASARI RACHMI, LIM KITAEK. Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
9
|
Self-Healing Supramolecular Hydrogels with Antibacterial Abilities for Wound Healing. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:7109766. [PMID: 36818381 PMCID: PMC9935882 DOI: 10.1155/2023/7109766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 11/25/2022] [Indexed: 02/11/2023]
Abstract
Wound healing due to skin defects is a growing clinical concern. Especially when infection occurs, it not only leads to impair healing of the wound but even leads to the occurrence of death. In this study, a self-healing supramolecular hydrogel with antibacterial abilities was developed for wound healing. The supramolecular hydrogels inherited excellent self-healing and mechanical properties are produced by the polymerization of N-acryloyl glycinamide monomers which carries a lot of amides. In addition, excellent antibacterial properties are obtained by integrating silver nanoparticles (Ag NPs) into the hydrogels. The resultant hydrogel has a demonstrated ability in superior mechanical properties, including stretchability and self-healing. Also, the good biocompatibility and antibacterial ability have been proven in hydrogels. Besides, the prepared hydrogels were employed as wound dressings to treat skin wounds of animals. It was found that the hydrogels could significantly promote wound repair, including relieving inflammation, promoting collagen deposition, and enhancing angiogenesis. Therefore, such self-healing supramolecular hydrogels with composite functional nanomaterials are expected to be used as new wound dressings in the field of healthcare.
Collapse
|
10
|
Wang B, Qinglai T, Yang Q, Li M, Zeng S, Yang X, Xiao Z, Tong X, Lei L, Li S. Functional acellular matrix for tissue repair. Mater Today Bio 2022; 18:100530. [PMID: 36601535 PMCID: PMC9806685 DOI: 10.1016/j.mtbio.2022.100530] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In view of their low immunogenicity, biomimetic internal environment, tissue- and organ-like physicochemical properties, and functionalization potential, decellularized extracellular matrix (dECM) materials attract considerable attention and are widely used in tissue engineering. This review describes the composition of extracellular matrices and their role in stem-cell differentiation, discusses the advantages and disadvantages of existing decellularization techniques, and presents methods for the functionalization and characterization of decellularized scaffolds. In addition, we discuss progress in the use of dECMs for cartilage, skin, nerve, and muscle repair and the transplantation or regeneration of different whole organs (e.g., kidneys, liver, uterus, lungs, and heart), summarize the shortcomings of using dECMs for tissue and organ repair after refunctionalization, and examine the corresponding future prospects. Thus, the present review helps to further systematize the application of functionalized dECMs in tissue/organ transplantation and keep researchers up to date on recent progress in dECM usage.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Tong
- Department of Hemodialysis, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Corresponding author. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Corresponding author. Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
11
|
Zhu Y, Kong B, Liu R, Zhao Y. Developing biomedical engineering technologies for reproductive medicine. SMART MEDICINE 2022; 1:e20220006. [PMID: 39188735 PMCID: PMC11235786 DOI: 10.1002/smmd.20220006] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 08/28/2024]
Abstract
Infertility is a rising global health issue with a far-reaching impact on the socioeconomic livelihoods. As there are highly complex causes of male and female infertility, it is highly desired to promote and maintain reproductive health by the integration of advanced technologies. Biomedical engineering, a mature technology applied in the fields of biology and health care, has emerged as a powerful tool in the diagnosis and treatment of infertility. Nowadays, various promising biomedical engineering approaches are under investigation to address human infertility. Biomedical engineering approaches can not only improve our fundamental understanding of sperm and follicle development in bioengineered devices combined with microfabrication, biomaterials, and relevant cells, but also be applied to repair uterine, ovary, and cervicovaginal tissues and restore tissue function. Here, we introduce the infertility in male and female and provide a comprehensive summary of the various promising biomedical engineering technologies and their applications in reproductive medicine. Also, the challenges and prospects of biomedical engineering technologies for clinical transformation are discussed. We believe that this review will promote communications between engineers, biologists, and clinicians and potentially contribute to the clinical transformation of these innovative research works in the immediate future.
Collapse
Affiliation(s)
- Yujuan Zhu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Bin Kong
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
12
|
Su C, Chen Y, Tian S, Lu C, Lv Q. Natural Materials for 3D Printing and Their Applications. Gels 2022; 8:748. [PMID: 36421570 PMCID: PMC9689506 DOI: 10.3390/gels8110748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 08/15/2023] Open
Abstract
In recent years, 3D printing has gradually become a well-known new topic and a research hotspot. At the same time, the advent of 3D printing is inseparable from the preparation of bio-ink. Natural materials have the advantages of low toxicity or even non-toxicity, there being abundant raw materials, easy processing and modification, excellent mechanical properties, good biocompatibility, and high cell activity, making them very suitable for the preparation of bio-ink. With the help of 3D printing technology, the prepared materials and scaffolds can be widely used in tissue engineering and other fields. Firstly, we introduce the natural materials and their properties for 3D printing and summarize the physical and chemical properties of these natural materials and their applications in tissue engineering after modification. Secondly, we discuss the modification methods used for 3D printing materials, including physical, chemical, and protein self-assembly methods. We also discuss the method of 3D printing. Then, we summarize the application of natural materials for 3D printing in tissue engineering, skin tissue, cartilage tissue, bone tissue, and vascular tissue. Finally, we also express some views on the research and application of these natural materials.
Collapse
Affiliation(s)
- Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
| |
Collapse
|
13
|
Wu B, Yang J, Zu Y, Chi J, Shi K. Aligned electrospun fiber film loaded with multi-enzyme mimetic iridium nanozymes for wound healing. J Nanobiotechnology 2022; 20:478. [PMID: 36384628 PMCID: PMC9670621 DOI: 10.1186/s12951-022-01685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
Abstract
A film with elaborate microstructures that offers biomimetic properties and multi functionalities is highly desired in wound healing. Here, we develop an aligned hydrogel fiber film integrated with multi-active constituents to promote wound healing. Such fiber films are designed and constructed by photo-crosslinking the methacrylate gelatin (GelMA) doped with silver nanoparticles (Ag NPs) and iridium nanoparticles coated with polyvinylpyrrolidone (PVP-Ir NPs) in the precursor solution using electrospinning. The nature of GelMA hydrogel and the aligned arrangement of nanofibers endow the film with high-water content, self-degradability, improved bionic characteristics, oriented cell growth, and improved cell proliferation and migration. Moreover, the encapsulated nanozymes and Ag NPs offer the fiber film with superior reactive oxygen species (ROS) scavenging and antibacterial capability. The infected wound model shows that the multi-active hydrogel fiber film can reduce inflammation by killing bacteria and decomposing ROS, which accelerates the growth of new blood vessels and granulation tissue. Benefitting from these features, the versatile aligned GelMA fiber film demonstrates the clinically translational potential for wound healing.
Collapse
Affiliation(s)
- Boda Wu
- Translational Medicine Laboratory, The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China
| | - Jintao Yang
- Translational Medicine Laboratory, The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, China.
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China.
| | - Junjie Chi
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Keqing Shi
- Translational Medicine Laboratory, The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
14
|
Bukhari KA, Khan IA, Ishaq S, Iqbal MO, Alqahtani AM, Alqahtani T, Menaa F. Formulation and Evaluation of Diclofenac Potassium Gel in Sports Injuries with and without Phonophoresis. Gels 2022; 8:612. [PMID: 36286113 PMCID: PMC9601609 DOI: 10.3390/gels8100612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
Background: Pain remains a global public heath priority. Phonophoresis, also known as sonophoresis or ultrasonophoresis, is when an ultrasound is used to maximize the effects of a topical drug. Purpose: The objective of this study was to test, in patients injured in sports or accidents (N = 200), the efficacy of diclofenac potassium (DK) 6%, 4%, and 2% formulated gels with and without phonophoresis in comparison with market available standard diclofenac sodium (DS or DN) gel. Methods: The patients were enrolled after informed consent. By using the lottery method, 100 patients were randomly segregated into five groups without phonophoresis and repeated similarly with phonophoresis at a frequency of 0.8 MHz, an intensity of about 1.5 W/cm2, and at continuous mode (2:1). Group-1 was treated with 6% DK gel, group-2 was treated with 4% DK gel, group-3 was treated with 2% DK gel, group-4 was treated with 4% DS gel and group-5 was given control gel three to four times a week for 4 weeks. The patients were screened by using NPRS and WOMAC scales. They were assessed on the baseline, 4th session, 8th session, 12th session, and 16th session. Results: Significant dose-dependently relief was observed in NPRS (Numeric Pain Rating Scale) and the WOMAC (Western Ontario McMaster Osteo-Arthritis) index for pain in disability and stiffness for each group treated with DK gel compared to DS gel. Phonophoresis increased these benefits significantly when used after topical application of DK gel or DS gel, and the dose-dependent effects of DK gel plus phonophoresis were stronger than the dose-dependent effects of DS gel plus phonophoresis. The faster and profounder relief was due to phonophoresis, which allows more penetration of the DK gel into the skin as compared to the direct application of DK gel in acute, uncomplicated soft tissue injury, such as plantar fasciitis, bursitis stress injuries, and tendinitis. In addition, DK gel with phonophoresis was well tolerated. Thus, in this personalized clinical setting, according to the degree of inflammation or injured-induced pain, disability, and stiffness, DK gel 6% with phonophoresis appeared more effective and thus more recommendable than DS gel 6% alone or DS gel 6% combined to phonophoresis.
Collapse
Affiliation(s)
- Komal Ammar Bukhari
- Ali-Ul-Murtaza, Department of Rehabilitation Sciences, Muhammad Institute of Medical and Allied Sciences, Multan 60000, Pakistan
| | - Imran Ahmad Khan
- Ali-Ul-Murtaza, Department of Rehabilitation Sciences, Muhammad Institute of Medical and Allied Sciences, Multan 60000, Pakistan
- Department of Pharmacology and Physiology, MNS University of Agriculture, Multan 60000, Pakistan
| | - Shahid Ishaq
- Department of Rehabilitation, Bakhtawar Amin Medical and Dental College, Multan 60000, Pakistan
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
- Royal Institute of Medical Sciences (RIMS), Multan 60000, Pakistan
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Farid Menaa
- Departments of Internal Medicine and Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA
| |
Collapse
|
15
|
Da LC, Sun Y, Lin YH, Chen SZ, Chen GX, Zheng BH, Du SR. Emerging Bioactive Agent Delivery-Based Regenerative Therapies for Lower Genitourinary Tissues. Pharmaceutics 2022; 14:1718. [PMID: 36015344 PMCID: PMC9414065 DOI: 10.3390/pharmaceutics14081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Injury to lower genitourinary (GU) tissues, which may result in either infertility and/or organ dysfunctions, threatens the overall health of humans. Bioactive agent-based regenerative therapy is a promising therapeutic method. However, strategies for spatiotemporal delivery of bioactive agents with optimal stability, activity, and tunable delivery for effective sustained disease management are still in need and present challenges. In this review, we present the advancements of the pivotal components in delivery systems, including biomedical innovations, system fabrication methods, and loading strategies, which may improve the performance of delivery systems for better regenerative effects. We also review the most recent developments in the application of these technologies, and the potential for delivery-based regenerative therapies to treat lower GU injuries. Recent progress suggests that the use of advanced strategies have not only made it possible to develop better and more diverse functionalities, but also more precise, and smarter bioactive agent delivery systems for regenerative therapy. Their application in lower GU injury treatment has achieved certain effects in both patients with lower genitourinary injuries and/or in model animals. The continuous evolution of biomaterials and therapeutic agents, advances in three-dimensional printing, as well as emerging techniques all show a promising future for the treatment of lower GU-related disorders and dysfunctions.
Collapse
Affiliation(s)
- Lin-Cui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yun-Hong Lin
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Su-Zhu Chen
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Gang-Xin Chen
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Bei-Hong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Sheng-Rong Du
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
16
|
Su C, Chen Y, Tian S, Lu C, Lv Q. Research Progress on Emerging Polysaccharide Materials Applied in Tissue Engineering. Polymers (Basel) 2022; 14:polym14163268. [PMID: 36015525 PMCID: PMC9413976 DOI: 10.3390/polym14163268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The development and application of polysaccharide materials are popular areas of research. Emerging polysaccharide materials have been widely used in tissue engineering fields such as in skin trauma, bone defects, cartilage repair and arthritis due to their stability, good biocompatibility and reproducibility. This paper reviewed the recent progress of the application of polysaccharide materials in tissue engineering. Firstly, we introduced polysaccharide materials and their derivatives and summarized the physicochemical properties of polysaccharide materials and their application in tissue engineering after modification. Secondly, we introduced the processing methods of polysaccharide materials, including the processing of polysaccharides into amorphous hydrogels, microspheres and membranes. Then, we summarized the application of polysaccharide materials in tissue engineering. Finally, some views on the research and application of polysaccharide materials are presented. The purpose of this review was to summarize the current research progress on polysaccharide materials with special attention paid to the application of polysaccharide materials in tissue engineering.
Collapse
Affiliation(s)
- Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
- Correspondence:
| |
Collapse
|