1
|
Bautista Quispe JI, Campos LC, Mašek O, Bogush A. Removal of anionic surfactant from aqueous solutions by adsorption onto biochars: characterisation, kinetics, and mechanism. ENVIRONMENTAL TECHNOLOGY 2024; 45:5723-5744. [PMID: 38252776 DOI: 10.1080/09593330.2024.2304677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
Biochar, a waste biomass-derived adsorbent, holds promise for decentralised wastewater treatment. However, limited research exists on its efficacy in adsorbing anionic surfactants in wastewater. To address this, the adsorption of sodium dodecyl sulphate (SDS), a common anionic surfactant, was studied using various biochar types: rice husk biochar (RH-550 and RH-700), wheat straw biochar (WS-550 and WS-700) produced at 550°C and 700°C, wood-based biochar (OB), and activated carbon (AC) as a control. The study investigated the impact of pH (3-9), adsorbent loading (1-10 g/L), adsorbent size (<0.5-2.5 mm), contact time (5-180 min), and initial concentration (50-200 mg/L) on SDS removal. Under optimised conditions (100 mg/L SDS, 4 g/L adsorbent, 1-2 mm particle size, pH 8.3, and 180 min contact time), maximum SDS removals were RH-550 (78%), RH-700 (82.4%), WS-550 (89.5%), WS-700 (90.4%), AC (97%), and OB (88.4%). Among the tested adsorbent materials, WS-550 exhibited the highest SDS adsorption capacity at 66.23 mg/g compared to AC (80.65 mg/g), followed by RH-550 (49.75 mg/g), OB (45.87 mg/g), RH-700 (43.67 mg/g), and WS-700 (42.74 mg/g). SDS adsorption followed a pseudo-second-order kinetic model, indicating chemisorption on the adsorbent surface. The Freundlich isotherm model exhibited a better fit for the experimental data on SDS adsorption using all tested adsorbents except for RH-550. This study showed that biochars produced from agricultural and forestry residues are effective adsorbents for SDS in aqueous solutions and can be a promising sustainable and low-cost material for the treatment of greywater containing anionic surfactants (e.g. handwashing, laundry, kitchen, and bathroom greywaters).
Collapse
Affiliation(s)
- J I Bautista Quispe
- Centre for Agroecology, Water and Resilience, Coventry University, Coventry, UK
| | - L C Campos
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK
| | - O Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - A Bogush
- Centre for Agroecology, Water and Resilience, Coventry University, Coventry, UK
| |
Collapse
|
2
|
Cetinkaya Atesci Z, Inan H. Removal of microfiber and surfactants from household laundry washing effluents by powdered activated carbon: kinetics and isotherm studies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1578-1593. [PMID: 37768756 PMCID: wst_2023_281 DOI: 10.2166/wst.2023.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Domestic laundry wastewater discharge contributes significantly to the presence of microfiber and surfactant pollutants in aquatic ecosystems, which have detrimental and toxic effects on humans and the environment. Investigating the efficacy of powdered activated carbon (PAC) in removing micro-/nanofibers with or without surfactant from household laundry effluent is the purpose of the current research. To simulate real-world scenarios, PAC adsorption kinetics and isotherms in laundry effluents under controlled conditions were studied. These studies showed that the kinetics obeyed a pseudo-second-order process and the isotherms varied between Langmuir and Freundlich models depending on the water types. In the results of experiments using distilled water and tap water, it was observed that the adsorption capacity was higher in tap water. When the adsorption of 0.1 μm filtered synthetic garments, detergent, and tap water was compared with the adsorption of the raw sample, it was observed that the adsorption capacity of the 0.1 μm filtered version was higher. Even though this study is preliminary, the results indicate that PAC has the capacity to serve as a viable approach for mitigating micro-/nanoplastic and surfactant contamination from laundry wastewater, thereby offering valuable guidance for advancing eco-friendly laundry techniques.
Collapse
Affiliation(s)
- Zuhal Cetinkaya Atesci
- Environmental Engineering Department, Gebze Technical University, Cayırova, Kocaeli 41400, Turkey E-mail:
| | - Hatice Inan
- Environmental Engineering Department, Gebze Technical University, Cayırova, Kocaeli 41400, Turkey
| |
Collapse
|
3
|
Cruz OF, Gómez IC, Rodríguez-Reinoso F, Silvestre-Albero J, Rambo CR, Martínez-Escandell M. Activated carbons with high micropore volume obtained from polyurethane foams for enhanced CO2 adsorption. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Zafar FF, Marrakchi F, Barati B, Yuan C, Cao B, Wang S. Highly efficient adsorption of Bisphenol A using NaHCO 3/CO 2 activated carbon composite derived from shrimp shell@cellulose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68724-68734. [PMID: 35554807 DOI: 10.1007/s11356-022-20564-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, the efficiency of activated carbon (AC) synthesized from the shrimp shell plus cellulose (SS@C) was optimized toward Bisphenol A (BPA) adsorption. Low-cost, renewable, and non-toxic shrimp shells mixed with cellulose were carbonized, followed by activation via CO2 and NaHCO3 to produce SS@C-AC. The results revealed that SS@C-AC samples were a porous composite with mesoporous structures comprising a relatively high specific surface area (935.20 m2/g) with a mean pore size of around 3.8 nm and mesoporous volume of 1.83E-02 cm3/g. The influences of initial concentrations, pH values, and adsorption on BPA were investigated systematically. Isotherm model and kinetics study of the adsorption of BPA on SS@C-AC exhibited that the obtained data were in agreement with the Langmuir adsorption isotherm model while there is no difference between PFO and PSO kinetic results for BPA concentrations in the range 25-100 mg/L. The impregnation ratio of 1.5 NaHCO3 and an activation time of 90 min at 800°C were the optimum conditions under which BPA removal of 81.78% was obtained.
Collapse
Affiliation(s)
- Fatemeh Fazeli Zafar
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Fatma Marrakchi
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bahram Barati
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chuan Yuan
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bin Cao
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, China
| | - Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Adsorption of sodium dodecyl benzene sulfonate on zeolitic imidazolate framework-8 synthesized using surfactant-free microemulsion as template. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Experimental Data and Modeling the Adsorption-Desorption and Mobility Behavior of Ciprofloxacin in Sandy Silt Soil. WATER 2022. [DOI: 10.3390/w14111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The improved understanding of the behavior of antibiotics in soil is of great importance due to their environmental hazard and frequent detection. In this work, the adsorption-desorption and mobility behaviors of ciprofloxacin in sandy silt soil, affecting the fate of ciprofloxacin in the environment, were studied by a series of batch tests and column tests. In batch tests, the effects of contact time, initial ciprofloxacin concentration, sandy silt soil dosage, solution pH, and ionic strength on ciprofloxacin adsorption and desorption in sandy silt soil were considered. Adsorption results were satisfactorily modeled, with good fittings to the pseudo-second-order model (R2 > 0.999) and Langmuir model (R2 > 0.991), with the value for Langmuir’s maximum adsorption capacity (qm) 5.50 mg g−1. Ciprofloxacin adsorption decreased sharply by increasing the pH from 7.0 to 10.0 and the ionic strength from 0.01 to 0.2 mol L−1 CaCl2. Comparatively, ciprofloxacin was more readily desorbed from sandy silt soil at alkaline and high ionic strength conditions. Breakthrough curves of ciprofloxacin obtained from the column experiments were described by the two-site model, Thomas model, and Yan mode. Of these models, the two-site model was the most suitable to describe the mobility of ciprofloxacin. The retardation factor (R) obtained in the two-site model was 345, suggesting strong adsorption affinity with ciprofloxacin on the sandy silt soil surface. The results from the Thomas model suggested the extremely small external and internal diffusion resistances. The Yan model was not suitable. Cation exchange interaction, electrostatic interaction, mechanical resistance, entrapment between porous media, and gravity sedimentation were proposed to be the important adsorption mechanisms.
Collapse
|
7
|
Luhar I, Luhar S, Abdullah MMAB, Razak RA, Vizureanu P, Sandu AV, Matasaru PD. A State-of-the-Art Review on Innovative Geopolymer Composites Designed for Water and Wastewater Treatment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7456. [PMID: 34885611 PMCID: PMC8658912 DOI: 10.3390/ma14237456] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
There is nothing more fundamental than clean potable water for living beings next to air. On the other hand, wastewater management is cropping up as a challenging task day-by-day due to lots of new additions of novel pollutants as well as the development of infrastructures and regulations that could not maintain its pace with the burgeoning escalation of populace and urbanizations. Therefore, momentous approaches must be sought-after to reclaim fresh water from wastewaters in order to address this great societal challenge. One of the routes is to clean wastewater through treatment processes using diverse adsorbents. However, most of them are unsustainable and quite costly e.g. activated carbon adsorbents, etc. Quite recently, innovative, sustainable, durable, affordable, user and eco-benevolent Geopolymer composites have been brought into play to serve the purpose as a pretty novel subject matter since they can be manufactured by a simple process of Geopolymerization at low temperature, lower energy with mitigated carbon footprints and marvellously, exhibit outstanding properties of physical and chemical stability, ion-exchange, dielectric characteristics, etc., with a porous structure and of course lucrative too because of the incorporation of wastes with them, which is in harmony with the goal to transit from linear to circular economy, i.e., "one's waste is the treasure for another". For these reasons, nowadays, this ground-breaking inorganic class of amorphous alumina-silicate materials are drawing the attention of the world researchers for designing them as adsorbents for water and wastewater treatment where the chemical nature and structure of the materials have a great impact on their adsorption competence. The aim of the current most recent state-of-the-art and scientometric review is to comprehend and assess thoroughly the advancements in geo-synthesis, properties and applications of geopolymer composites designed for the elimination of hazardous contaminants viz., heavy metal ions, dyes, etc. The adsorption mechanisms and effects of various environmental conditions on adsorption efficiency are also taken into account for review of the importance of Geopolymers as most recent adsorbents to get rid of the death-defying and toxic pollutants from wastewater with a view to obtaining reclaimed potable and sparkling water for reuse offering to trim down the massive crisis of scarcity of water promoting sustainable water and wastewater treatment for greener environments. The appraisal is made on the performance estimation of Geopolymers for water and wastewater treatment along with the three-dimensional printed components are characterized for mechanical, physical and chemical attributes, permeability and Ammonium (NH4+) ion removal competence of Geopolymer composites as alternative adsorbents for sequestration of an assortment of contaminants during wastewater treatment.
Collapse
Affiliation(s)
- Ismail Luhar
- Department of Civil Engineering, Shri Jagdishprasad Jhabarmal Tibrewala University, Rajasthan 333001, India;
| | - Salmabanu Luhar
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Perlis 01000, Malaysia;
- Frederick Research Center, P.O. Box 24729, Nicosia 1303, Cyprus
- Department of Civil Engineering, Frederick University, Nicosia 1036, Cyprus
| | - Mohd Mustafa Al Bakri Abdullah
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Perlis 01000, Malaysia;
| | - Rafiza Abdul Razak
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Perlis 01000, Malaysia;
| | - Petrica Vizureanu
- Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, D. Mangeron 41, 700050 Iasi, Romania
| | - Andrei Victor Sandu
- Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, D. Mangeron 41, 700050 Iasi, Romania
- Romanian Inventors Forum, St. P. Movila 3, 700089 Iasi, Romania
- National Institute for Research and Development in Environmental Protection INCDPM, Splaiul Independentei 294, 060031 Bucuresti, Romania
| | - Petre-Daniel Matasaru
- Faculty of Electronics, Telecommunications and Information Technology, Technical University “Gheorghe Asachi”, Carol I Bvd, nr. 11 A, 700506 Iasi, Romania;
| |
Collapse
|
8
|
Badmus SO, Amusa HK, Oyehan TA, Saleh TA. Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62085-62104. [PMID: 34590224 PMCID: PMC8480275 DOI: 10.1007/s11356-021-16483-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/07/2021] [Indexed: 05/08/2023]
Abstract
This work comprehensively reviewed the toxicity and risks of various surfactants and their degraded products in the environmental matrices, various analytical procedures, and remediation methods for these surfactants. The findings revealed that the elevated concentration of surfactants and their degraded products disrupt microbial dynamics and their important biogeochemical processes, hinder plant-surviving processes and their ecological niche, and retard the human organic and systemic functionalities. The enormous adverse effects of surfactants on health and the environment necessitate the need to develop, select, and advance the various analytical and assessment techniques to achieve effective identification and quantification of several surfactants in different environmental matrices. Considering the presence of surfactants in trace concentration and environmental matrices, excellent analysis can only be achieved with appropriate extraction, purification, and preconcentration. Despite these pre-treatment procedures, the chromatographic technique is the preferred analytical technique considering its advancement and shortcomings of other techniques. In the literature, the choice or selection of remediation techniques for surfactants depends largely on eco-friendliness, cost-implications, energy requirements, regeneration potential, and generated sludge composition and volume. Hence, the applications of foam fractionation, electrochemical advanced oxidation processes, thermophilic aerobic membranes reactors, and advanced adsorbents are impressive in the clean-up of the surfactants in the environment. This article presents a compendium of knowledge on environmental toxicity and risks, analytical techniques, and remediation methods of surfactants as a guide for policymakers and researchers.
Collapse
Affiliation(s)
- Suaibu O Badmus
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| | - Hussein K Amusa
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Tajudeen A Oyehan
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
9
|
Almanassra IW, Kochkodan V, Mckay G, Atieh MA, Al-Ansari T. Kinetic and thermodynamic investigations of surfactants adsorption from water by carbide-derived carbon. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1206-1220. [PMID: 34618658 DOI: 10.1080/10934529.2021.1973822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The objective of the study is to investigate the potential of carbide-derived carbon (CDC) for the adsorptive removal of nonionic t-octylphenoxy poly ethoxy ethanol (TX-100), anionic sodium dodecylbenzene sulfonate (SDBS) and cationic 1-hexadecylpyridinium bromide (HDPB) surfactants from water. The CDC was characterized using TEM, SEM, FTIR, BET, EDS, XPS methods and zeta potential measurements. The effects of adsorption parameters included initial surfactant concentration, contact time, temperature, and pH of the feed solution were evaluated. The adsorption capacity and mechanism were determined by modeling the isotherm, kinetic and thermodynamic data. The kinetics results demonstrated that the adsorption of the surfactant by CDC obeys the pseudo 2nd order model. The thermodynamic results have shown that surfactants adsorption by CDC is an endothermic and spontaneous process. The Sips model agreed with the adsorption isotherm data of SDBS with R2 of 0.987, while both Freundlich and Redlich-Peterson models comply well with adsorption data for TX-100 and HDPB. The hydrophobic and electrostatic interactions were found the dominant mechanisms of the adsorption of the surfactant by CDC. The adsorption capacities of CDC were found to be 442.4, 462.0 and 578.4 mg/g for SDBS, HDPB and TX-100, respectively.
Collapse
Affiliation(s)
- Ismail W Almanassra
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Desalination Research Group, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Gordon Mckay
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Muataz Ali Atieh
- Desalination Research Group, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
- College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Tareq Al-Ansari
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
10
|
Ma J, Ma Y, Wei R, Chen Y, Weng L, Ouyang X, Li Y. Phosphorus transport in different soil types and the contribution of control factors to phosphorus retardation. CHEMOSPHERE 2021; 276:130012. [PMID: 34088086 DOI: 10.1016/j.chemosphere.2021.130012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Iron (Fe) minerals, organic matter (OM), and pH can effectively regulate phosphorus (P) transport in the soil. However, their respective contributions in this regard are still unclear. In this study, P transport in soil columns was investigated by monitoring breakthrough curves and transport model fitting, and the contributions of Fe and total organic carbon (TOC) concentrations, as well as pH to P retention, were determined using multiple linear regression (MLR). The results showed that the rate of P transport in Fe-rich laterite soil was significantly lower (retardation factor R = 458.5) than that in the other soil types (R = 108.4-247.6). Additionally, it was observed that OM formed rate-limited adsorption sites, causing the rapid release of labile P, and owing to P release and readsorption. Even though more significant P releases were observed, chernozem soil had an obvious inhibiting effect on P transport owing to its relatively high Fe content, and the high P-Fe increment (48.9-90.4%) indicated the essential role of Fe minerals in P immobilization. Further, P was readily transported in natural or artificially modified fluvo-aquic soils with high calcium concentrations, and it was also observed that the convection-dispersion equation (CDE) and Thomas models were suitable for describing P retardation and adsorption, respectively. Furthermore, the contribution weights of Fe and TOC concentrations as well as pH to P retardation, based on MLR calculations, were approximately 1.0, -0.3, and -0.2, respectively. Our findings can support the control of eutrophication pollution caused by P leaching.
Collapse
Affiliation(s)
- Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yuling Ma
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Rongfei Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands.
| | - Xiaoxue Ouyang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
11
|
Sasi S, Rayaroth MP, Aravindakumar CT, Aravind UK. Alcohol ethoxysulfates (AES) in environmental matrices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34167-34186. [PMID: 33970421 DOI: 10.1007/s11356-021-14003-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Extensive use of surfactants in numerous fields resulted in their discharge into various environmental compartments including soil, sediment, and water. Alcohol ethoxysulfates (AES) together with alcohol ethoxylates (AE), alkyl sulfates (AS), and linear alkyl benzene sulfonates (LAS) find wide variety of applications in consumer products including both domestic and industrial applications. Consequently, all these surfactants pose several concerns to both aquatic and human health. In the context of environmental impacts, AES has almost equal importance as that of LAS though the literature on this topic is only emerging. This review provides a detailed overview on the various aspects of the anionic surfactant, AES, such as toxicity of AES, its fate in the ecosystem, technical advancements in the area of identification and quantification, its occurrence and distribution in different environmental compartments spanning across the world, and finally a remark of its potential removal strategy from the environment.
Collapse
Affiliation(s)
- Subha Sasi
- Advanced Centre of Environmental Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Manoj P Rayaroth
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, Kerala, 682022, India.
| |
Collapse
|
12
|
Abstract
Porous materials constitute an attractive research field due to their high specific surfaces; high chemical stabilities; abundant pores; special electrical, optical, thermal, and mechanical properties; and their often higher reactivities. These materials are currently generating a great deal of enthusiasm, and they have been used in large and diverse applications, such as those relating to sensors and biosensors, catalysis and biocatalysis, separation and purification techniques, acoustic and electrical insulation, transport gas or charged species, drug delivery, and electrochemistry. Porous carbons are an important class of porous materials that have grown rapidly in recent years. They have the advantages of a tunable pore structure, good physical and chemical stability, a variable specific surface, and the possibility of easy functionalization. This gives them new properties and allows them to improve their performance for a given application. This review paper intends to understand how porous carbons involve the removal of pollutants from water, e.g., heavy metal ions, dyes, and organic or inorganic molecules. First, a general overview description of the different precursors and the manufacturing methods of porous carbons is illustrated. The second part is devoted to reporting some applications such using porous carbon materials as an adsorbent. It appears that the use of porous materials at different scales for these applications is very promising for wastewater treatment industries.
Collapse
|
13
|
Márquez-Montesino F, Torres-Figueredo N, Lemus-Santana A, Trejo F. Activated Carbon by Potassium Carbonate Activation from Pine Sawdust (
Pinus
montezumae
Lamb.). Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Neil Torres-Figueredo
- Instituto Politécnico Nacional CICATA-Legaria Legaria 694, Col. Irrigación 11500 Mexico City Mexico
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco 07360 Mexico City Mexico
| | - Adela Lemus-Santana
- Instituto Politécnico Nacional CICATA-Legaria Legaria 694, Col. Irrigación 11500 Mexico City Mexico
| | - Fernando Trejo
- Instituto Politécnico Nacional CICATA-Legaria Legaria 694, Col. Irrigación 11500 Mexico City Mexico
| |
Collapse
|
14
|
Asadi-Sangachini Z, Galangash MM, Younesi H, Nowrouzi M. The feasibility of cost-effective manufacturing activated carbon derived from walnut shells for large-scale CO 2 capture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26542-26552. [PMID: 31292871 DOI: 10.1007/s11356-019-05842-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
The economic potential of activated carbon (AC) synthesis from walnut shell biomass for CO2 capture was evaluated in the present study. For this purpose, the chemical activation was employed to manufacture ACs and the effect of different impregnation ratios of activation agents, comprising KOH (KH) and H3PO4 (HP), onto the properties of fabricated ACs was examined. The obtained results demonstrated that the synthesized AC by HP activation with an impregnation ratio of 1:2.5, which was identified as HP2.5, possesses the highest surface area (1512.6 m2/g), micropore volume percentage (74.65%), and CO2 adsorption (3.55 mmol/g) at 1 bar and 30 °C. Moreover, the equilibrium CO2 adsorption data for HP2.5 were better fitted with the Freundlich model, indicating the multilayer CO2 adsorption onto the heterogeneous AC surface dominantly through a physisorption process. In addition, the economic estimations revealed a cost of about $1.83/kg for the ultimate production that was significantly lower than the most of available CACs in the market. Therefore, walnut shells can be considered as a cost-effective and promising biomass source from a scale-up point of view.
Collapse
Affiliation(s)
- Zahra Asadi-Sangachini
- Department of Environmental Science, Faculty of Natural Resources, University of Guilan, Rasht, Guilan, Iran
| | - Mohsen Mohammadi Galangash
- Department of Environmental Science, Faculty of Natural Resources, University of Guilan, Rasht, Guilan, Iran.
| | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran.
| | - Mohsen Nowrouzi
- Department of Marine Environment, Faculty of Marine Science and Technology, Persian Gulf University, Bushehr, 75169-13798, Iran.
| |
Collapse
|
15
|
Preparation of Pore-Size Controllable Activated Carbon from Rice Husk Using Dual Activating Agent and Its Application in Supercapacitor. J CHEM-NY 2019. [DOI: 10.1155/2019/4329609] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activated carbons prepared from rice husk by chemical activation with dual activation agents, KOH and NaOH, have been studied and characterized by BET, SEM, EDX, FTIR, Boehm titration, Raman, and TGA. It was found that the KOH/NaOH impregnation ratio plays an important role on textural properties of AC. At the same amount of total alkali hydroxide, the KOH/NaOH ratio higher than 1.33 resulted in larger specific surface area (2990∼3043 m2·g−1), microporous surface area (2747∼2831 m2·g−1), and higher micropore volume (1.4250∼1.4316 cm3·g−1). The as-prepared samples exist in the form of spherical-shaped particles with the size ranging from 20 to 60 nm and contain numerous surface functional groups. The as-prepared activated carbons were then assessed as an electrode material of supercapacitor operating in the 0.5 M K2SO4 electrolyte in potential windows of −1.0∼0.0 V. The highest capacitance obtained was 205 F·g−1 at the scan rate of 2 mV·s−1 and 225 F·g−1 at a current density of 0.2 A·g−1. At the scan rate as high as 50 mV·s−1, all the as-prepared activated carbons in this study have the specific capacitance greater than 100 F·g−1.
Collapse
|
16
|
Radwan EK, El-Wakeel ST, Gad-Allah TA. Effects of activation conditions on the structural and adsorption characteristics of pinecones derived activated carbons. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1467327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Emad K. Radwan
- Water Pollution Research Department, National Research Centre, Dokki, Giza, Egypt
| | - Shaimaa T. El-Wakeel
- Water Pollution Research Department, National Research Centre, Dokki, Giza, Egypt
| | - Tarek A. Gad-Allah
- Water Pollution Research Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
17
|
Kim J, Kim D, Gwon YJ, Lee KW, Lee TS. Removal of Sodium Dodecylbenzenesulfonate by Macroporous Adsorbent Resins. MATERIALS 2018; 11:ma11081324. [PMID: 30065182 PMCID: PMC6117907 DOI: 10.3390/ma11081324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/07/2022]
Abstract
Among the surfactants used for removal of radioactive nuclides generated from nuclear decontamination, sodium dodecylbenzenesulfonate (SDBS) is frequently used. A potential environmental problem of incomplete elimination of SDBS from radioactive liquid wastes (RLWs), which contain a high concentration of SDBS and radioactive nuclides, still remains. Removal of SDBS was evaluated by adsorption using commercially available, macroporous polymer-based adsorbents, HP20 and HP2MGL, which are styrene (St)- and methyl methacrylate (MMA)-based crosslinked resin beads, respectively. The effect of the macroporosity and chemical structure of the macroporous adsorbent resins (MARs) on the adsorption behavior was investigated. HP20 did not have any functionality for adsorbing SDBS, but it showed effective adsorption toward SDBS (less than 20 min to reach 90% adsorption), because of the hydrophobic interaction between the phenyl groups in the St unit in HP20 and in the SDBS. The removal of SDBS from a mixed solution of SDBS and Cs ions was investigated to elucidate the adsorption process in an imitation of the sort of RLWs. This investigation suggests that MARs can potentially be used for the removal of SDBS not only from a SDBS solution but also from a mixed solution of SDBS and Cs ions.
Collapse
Affiliation(s)
- Jongho Kim
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea.
| | - Daewon Kim
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea.
| | - Young Jin Gwon
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea.
| | - Kune-Woo Lee
- Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea.
| | - Taek Seung Lee
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
18
|
Adsorption of acid blue 29 and methylene blue on mesoporous K2CO3-activated olive pomace boiler ash. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Cai H, Lin X, Qin Y, Luo X. Hydrothermal synthesis of carbon microsphere from glucose at low temperature and its adsorption property of uranium(VI). J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-5106-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|