1
|
Li J, Xie F, Ma X. Advances in nanomedicines: a promising therapeutic strategy for ischemic cerebral stroke treatment. Nanomedicine (Lond) 2024; 19:811-835. [PMID: 38445614 DOI: 10.2217/nnm-2023-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Ischemic stroke, prevalent among the elderly, necessitates attention to reperfusion injury post treatment. Limited drug access to the brain, owing to the blood-brain barrier, restricts clinical applications. Identifying efficient drug carriers capable of penetrating this barrier is crucial. Blood-brain barrier transporters play a vital role in nutrient transport to the brain. Recently, nanoparticles emerged as drug carriers, enhancing drug permeability via surface-modified ligands. This article introduces the blood-brain barrier structure, elucidates reperfusion injury pathogenesis, compiles ischemic stroke treatment drugs, explores nanomaterials for drug encapsulation and emphasizes their advantages over conventional drugs. Utilizing nanoparticles as drug-delivery systems offers targeting and efficiency benefits absent in traditional drugs. The prospects for nanomedicine in stroke treatment are promising.
Collapse
Affiliation(s)
- Jun Li
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| | - Fei Xie
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| | - Xuemei Ma
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| |
Collapse
|
2
|
Abstract
Neurodegenerative diseases are characterized by a massive loss of specific neurons, which can be fatal. Acrolein, an omnipresent environmental pollutant, is classified as a priority control contaminant by the EPA. Evidence suggests that acrolein is a highly active unsaturated aldehyde related to many nervous system diseases. Therefore, numerous studies have been conducted to identify the function of acrolein in neurodegenerative diseases, such as ischemic stroke, AD, PD, and MS, and its exact regulatory mechanism. Acrolein is involved in neurodegenerative diseases mainly by elevating oxidative stress, polyamine metabolism, neuronal damage, and plasma ACR-PC levels, and decreasing urinary 3-HPMA and plasma GSH levels. At present, the protective mechanism of acrolein mainly focused on the use of antioxidant compounds. This review aimed to clarify the role of acrolein in the pathogenesis of four neurodegenerative diseases (ischemic stroke, AD, PD and MS), as well as protection strategies, and to propose future trends in the inhibition of acrolein toxicity through optimization of food thermal processing and exploration of natural products.
Collapse
|
3
|
Sakamoto A, Uemura T, Terui Y, Yoshida M, Fukuda K, Nakamura T, Kashiwagi K, Igarashi K. Development of an ELISA for Measurement of Urinary 3-Hydroxypropyl Mercapturic Acid (3-HPMA), the Marker of Stroke. Med Sci (Basel) 2020; 8:medsci8030033. [PMID: 32824278 PMCID: PMC7564686 DOI: 10.3390/medsci8030033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
We previously observed an inverse correlation between stroke and urinary 3-hydroxypropyl mercapturic acid (3-HPMA), an acrolein-glutathione metabolite, through its measurement by liquid chromatography with tandem mass spectrometry (LC-MS/MS). However, the cost of equipment for LC-MS/MS and its maintenance fee is very expensive and a cost-efficient method is required. In this study, we have developed a sensitive enzyme-linked immunosorbent assay (ELISA) system to measure 3-HPMA using a chicken antibody recognizing 3-HPMA-conjugated chicken albumin as antigen. Linearity to measure 3-HPMA was obtained from 0 to 10 μM, indicating that this ELISA system is useful for measurement of urine 3-HPMA. It was confirmed that 3-HPMA in urine of stroke patients decreased significantly compared with that of control subjects using the ELISA system. Using the ELISA kit, it became possible to evaluate the risk of brain stroke by not only plasma but also by urine. These results confirm that shortage of glutathione to detoxify acrolein is one of the major causes of stroke incidence. Our method contributes to maintenance of quality of life (QOL) of the elderly.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan; (A.S.); (Y.T.); (K.K.)
| | - Takeshi Uemura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba 260-0856, Japan; (T.U.); (M.Y.)
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan; (A.S.); (Y.T.); (K.K.)
| | - Madoka Yoshida
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba 260-0856, Japan; (T.U.); (M.Y.)
| | - Kazumasa Fukuda
- Chiba Central Medical Center, 1835-1 Kasori-cho, Wakaba-ku, Chiba 264-0017, Japan; (K.F.); (T.N.)
| | - Takao Nakamura
- Chiba Central Medical Center, 1835-1 Kasori-cho, Wakaba-ku, Chiba 264-0017, Japan; (K.F.); (T.N.)
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan; (A.S.); (Y.T.); (K.K.)
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba 260-0856, Japan; (T.U.); (M.Y.)
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Correspondence: ; Tel.: +81-43-224-7500; Fax: +81-43-379-1050
| |
Collapse
|