1
|
Zhang X, Li Z. Modeling the impact of pesticide drift deposition on off-field non-target receptors. CHEMOSPHERE 2024; 365:143363. [PMID: 39299464 DOI: 10.1016/j.chemosphere.2024.143363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Pesticide application can result in residue drift deposition in off-field areas, which can be harmful to non-target organisms inhabiting adjacent off-field environments. In order to comprehend the impact of pesticide drift deposition on off-field non-target organisms, an integrated modeling approach was incorporated into the life cycle analysis perspective for the assessment of their exposure to pesticide residues and the characterization of their human toxicity and ecotoxicity potentials. The modeling assumption comprises four modeling scenarios: children & cattle & sensitive crops (tomatoes) based on exposure assessment, and the continent-scale human health toxicity & ecotoxicity under a life cycle analysis perspective. The simulation results for the nearby off-field exposure scenario revealed that pesticide dissipation kinetics in environments and drift deposition type were two important factors influencing non-target organisms' exposure to pesticide residues deposited in off-field environments. The continental scenario simulated via USEtox revealed that considering off-field drift deposition resulted in lower simulated human toxicity potentials of pesticides when compared to simulation results that did not consider drift deposition, given that pesticide residues remaining within the treated field contributed the most to overall human exposure. Taking drift deposition into account, on the other hand, could result in higher or lower simulated ecotoxicity potentials of pesticides than not taking drift deposition in off-field areas into account, depending on the physicochemical properties of pesticides. The proposed modeling approach, which is adaptable to drift deposition types and chemical species, can aid in investigating the off-field impacts of pesticide residues. Future research will incorporate spatiotemporal factors to characterize region-specific drift deposition functions and pesticide fate in off-field environments to conduct site-specific impact assessments.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
2
|
Huang Y, Zhang X, Li Z. Analysis of nationwide soil pesticide pollution: Insights from China. ENVIRONMENTAL RESEARCH 2024; 252:118988. [PMID: 38663666 DOI: 10.1016/j.envres.2024.118988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024]
Abstract
China is a typical agricultural country that heavily relies on pesticides. Some pesticides can remain in the soil after application and thus pose a significant threat to human health. In order to characterize the status and hazards of nationwide soil contamination, this study extracted concentration data from published literature and analyzed them by a scoring approach, standard comparison and health risk assessment. For the soil pollution score, northern regions got the highest values, such as Henan (0.63), Liaoning (0.55), Heilongjiang (0.54) and Jilin (0.53), which implies high soil pesticide residues in these provinces. In contrast, Qinghai (-0.77), Guizhou (-0.64) and Tibet (-0.63) had lower scores. China's soil pesticide standards cover only 16 pesticides, and these pesticide concentrations were all below the corresponding standards. Direct exposure to soil pesticides in this study generally posed a negligible risk to children. Furthermore, pesticide dissipation and usage intensity in each province were analyzed as they were possible influences on pollution. The result showed that soil in the northern regions could accumulate more pesticides than those in the southern regions, and this geographic pattern was basically consistent with the distribution of soil pollution. However, the relationship between agricultural activities and soil pollution was less well characterized. It is recommended to establish a long-term monitoring database for pesticides and include more pesticides in regulatory frameworks. Additionally, efforts to accelerate pesticide degradation and shift the planting structure to reduce pesticide usage can help alleviate the pressure on soil from pesticides. This study can serve as a critical reference for policymakers and stakeholders in the field of agriculture.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
3
|
Li Z. Assessing potential soil pollution from plant waste disposal: A modeling analysis of pesticide contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167859. [PMID: 37852498 DOI: 10.1016/j.scitotenv.2023.167859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Pesticide residues can be taken up by plants after pesticide application, potentially resulting in soil pollution following the disposal of plant wastes at harvest. Currently, there is a lack of simple and efficient methods that can conduct high-throughput simulations to explore this problem across various chemicals and plant species. We present a modeling approach to simulating pesticide residue concentrations in soil as a result of plant waste disposal to assess the impact of plant wastes on agricultural soil pollution with respect to pesticide residues. This modeling approach employs well-established plant uptake models, providing versatility in evaluating different chemicals and plant species. The simulation process was tabulated in the spreadsheet interface, providing users with the flexibility to adjust input values for specific chemicals, plant species, and regions. The simulation results revealed that pesticides with relatively low lipophilicity (i.e., log KOW < 2) had low simulated residue concentrations in the soil as a result of plant waste disposal at harvest, whereas soil concentrations for lipophilic pesticides dramatically rose. This indicated that disposal of plant waste in agricultural soils will not pose significant ecological concerns to pesticides with low lipophilicity. The variability analysis showed that for certain pesticides, environmental factors (such as temperature and humidity) had a significant impact on the simulated residue concentrations in the soil as a result of plant waste disposal, which aided in the assessment of regional ecological risk as well as plant disposal management. Although some modeling aspects such as plant decomposition process, advanced plant uptake models, heterological distribution of residue concentrations in the soil, and plant waste stacking patterns require further research, the proposed approach can be used to assist in managing soil pesticides from plant waste disposal in preliminary stages.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
4
|
Li Z. Modeling banana uptake of pesticides by incorporating a peel-pulp interaction system into a multicompartment fruit tree model. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130411. [PMID: 36403454 DOI: 10.1016/j.jhazmat.2022.130411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
According to field research, banana peels have a significant impact on the uptake of pesticide residues by banana pulps. To predict pesticide residue concentrations in harvested bananas, however, current modeling approaches did not take into consideration the banana peel as a single simulating compartment. To address the problem, we incorporated a peel-pulp interaction system into a modified multicompartment fruit tree model in order to simulate pesticide residue concentrations in banana plants. The simulation results revealed that lipophilicity played a crucial role in regulating pesticide bioaccumulation in banana plants, showing that moderately- or highly-lipophilic compounds had a high potential for bioaccumulation in banana pulps and peels. Some model inputs, such as peel thickness, degradation rates in plant tissues, and dissipation rates in the soil, had a substantial impact on the bioaccumulation of pesticides in banana pulps and peels. Even if more aspects (such as dynamically morphological properties of banana plants and ionizable chemical compounds) must be considered for in future research, the proposed modeling approach can aid in the comprehension of the pesticide bioaccumulation mechanism in banana plants.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
5
|
Pang X, Li C, Zang C, Guan L, Zhang P, Di C, Zou N, Li B, Mu W, Lin J. Simultaneous detection of ten kinds of insecticide residues in honey and pollen using UPLC-MS/MS with graphene and carbon nanotubes as adsorption and purification materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21826-21838. [PMID: 34767177 DOI: 10.1007/s11356-021-17196-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
An analytical method of simultaneous detection of ten insecticide residues in honey and pollen was established. The samples were purified with QuEChERS approach using new adsorbents and analyzed with UPLC-MS/MS. The results showed that both of graphene and carbon nanotubes were highly efficient adsorbents for the dSPE clean up to eliminate coextractives in the samples, and graphene was superior to carbon nanotubes for the detection of pesticide residues in honey and pollen samples. The proposed method was used to detect pesticide residues in 25 honey samples and 30 pollen samples which were randomly collected from more than ten provinces in China. All honey samples contain 1-27 μg/kg of chlorpyrifos residues. Only 4% of the honey samples were detected containing acetamiprid and imidacloprid, while the other seven pesticides were not detected. Chlorpyrifos residues were found in all pollen samples (5-66 μg/kg), among which twenty percent exceeded the maximum residue limits (MRLs, 50 μg/kg, European Commission Regulation). Most of the pollen samples containing pesticide concentrations higher than MRLs were collected from rape, followed by lotus, camellia, and rose. Besides, 36.7% and 33.3% of the pollen samples had imidacloprid and flupyradifurone higher than 5 μg/kg. A total of 26.7% pollen samples were detected containing bifenthrin, while none of the other six pesticides were detected in pollen samples.
Collapse
Affiliation(s)
- Xiuyu Pang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China
| | - Chenyu Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chuanjiang Zang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Lei Guan
- Rural Economy and Agricultural Technology Service Center of Banpu town in Haizhou district, Lianyungang, 222000, Jiangsu, China
| | - Peng Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chunxiang Di
- The Rural Economy Management Main Station of Shandong Province, Jinan, 250013, Shandong, China
| | - Nan Zou
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Beixing Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wei Mu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jin Lin
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
6
|
Xiao S, Li Z, Fantke P. Improved plant bioconcentration modeling of pesticides: The role of periderm dynamics. PEST MANAGEMENT SCIENCE 2021; 77:5096-5108. [PMID: 34236751 PMCID: PMC8518939 DOI: 10.1002/ps.6549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND There is a continuous need to advance pesticide plant uptake models in support of improving pest control and reducing human exposure to pesticide residues. The periderm of harvested root and tuber crops may affect pesticide uptake, but is usually not considered in plant uptake models. To quantify the influence of the periderm on pesticide uptake from soil into potatoes, we propose a model that includes an explicit periderm compartment in the soil-plant mass balance for pesticides. RESULTS Our model shows that the potato periderm acts as an active barrier to the uptake of lipophilic pesticides with high KOW , while it lets more lipophobic pesticides accumulate in the medulla (pulp). We estimated bioconcentration factors (BCFs) for over 700 pesticides and proposed parameterizations for including the effects of the periderm into a full plant uptake modeling framework. A sensitivity analysis shows that both the degradation half-life inside the tuber and the lipophilicity drive the contributions of other aspects to the variability of BCFs, while highlighting distinct dynamics in the periderm and medulla compartments. Finally, we compare model estimates with measured data, showing that predictions agree with field observations for current-use pesticides and some legacy pesticides frequently found in potatoes. CONCLUSION Considering the periderm improves the accuracy of quantifying pesticide uptake and bioconcentration in potatoes as input for optimizing pest control and minimizing human exposure to pesticide residues in edible crops.
Collapse
Affiliation(s)
- Shenglan Xiao
- School of Public Health (Shenzhen)Sun Yat‐sen UniversityShenzhenChina
| | - Zijian Li
- School of Public Health (Shenzhen)Sun Yat‐sen UniversityShenzhenChina
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and EconomicsTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
7
|
Li Z, Niu S. Modeling pesticides in global surface soils: Evaluating spatiotemporal patterns for USEtox-based steady-state concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148412. [PMID: 34412385 DOI: 10.1016/j.scitotenv.2021.148412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
To better manage pesticide pollution in surface soils, we introduced a first-order-kinetics-based screening model to evaluate the steady-state concentrations of pesticides in surface soils while considering degradation, volatilization, plant uptake, and precipitation processes. For each process, we developed a spatiotemporal-pattern-based model using spatiotemporal variables, including air temperature (TA), relative humidity (RHA), and rainfall intensity (IRA), to characterize the overall dissipation rates (kT) of pesticides in the soil. These dissipation rates were converted to fate factors (FFs), which are commonly used in life cycle analyses. The results indicate that, in general, the kT values increase with increasing TA and IRA and decrease with increasing RHA. This is because increased TA boosts the degradation, volatilization, and plant uptake processes, whereas increased RHA lowers the plant transpiration rate. Also, the simulation for over 700 pesticides indicated that the degradation process dominates the overall dissipation of most pesticides in the soil, and the volatilization process contributes the least. In addition, we simulated chlorpyrifos FFs for Brazil, China, the US, and the European Union (EU) using the annual average TA, RHA, and IRA values. The results indicate that, in general, Brazilian federal units have the smallest FFs and the narrowest simulated FF range because of their humid tropical climates. Meanwhile, the EU member states have the largest FFs and the widest FF range because of their range in locations. In addition, our simulated results show that the surface soils in the high-latitude regions could accumulate more chlorpyrifos than those in low-latitude regions because of the larger simulated FFs. Furthermore, we parameterized our model using 737 pesticides with the USEtox, thereby providing an alternative approach to simulate the steady-state concentration of pesticides in surface soils from the USEtox available data. The model developed herein is a useful screening tool for predicting pesticide concentrations in surface soil worldwide to improve soil and ecological health risk management.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, China.
| | - Shan Niu
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
8
|
Jia XX, Li S, Han DP, Chen RP, Yao ZY, Ning BA, Gao ZX, Fan ZC. Development and perspectives of rapid detection technology in food and environment. Crit Rev Food Sci Nutr 2021; 62:4706-4725. [PMID: 33523717 DOI: 10.1080/10408398.2021.1878101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Food safety become a hot issue currently with globalization of food trade and food supply chains. Chemical pollution, microbial contamination and adulteration in food have attracted more attention worldwide. Contamination with antibiotics, estrogens and heavy metals in water environment and soil environment have also turn into an enormous threat to food safety. Traditional small-scale, long-term detection technologies have been unable to meet the current needs. In the monitoring process, rapid, convenient, accurate analysis and detection technologies have become the future development trend. We critically synthesizing the current knowledge of various rapid detection technology, and briefly touched upon the problem which still exist in research process. The review showed that the application of novel materials promotes the development of rapid detection technology, high-throughput and portability would be popular study directions in the future. Of course, the ultimate aim of the research is how to industrialization these technologies and apply to the market.
Collapse
Affiliation(s)
- Xue-Xia Jia
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China.,State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| | - Shuang Li
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Dian-Peng Han
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Rui-Peng Chen
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Bao-An Ning
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| |
Collapse
|
9
|
Gilbert EPK, Edwin L. A Review on Prediction Models for Pesticide Use, Transmission, and Its Impacts. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 257:37-68. [PMID: 33932184 DOI: 10.1007/398_2020_64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The lure of increased productivity and crop yield has caused the imprudent use of pesticides in great quantity that has unfavorably affected environmental health. Pesticides are chemicals intended for avoiding, eliminating, and mitigating any pests that affect the crop. Lack of awareness, improper management, and negligent disposal of pesticide containers have led to the permeation of pesticide residues into the food chain and other environmental pathways, leading to environmental degradation. Sufficient steps must be undertaken at various levels to monitor and ensure judicious use of pesticides. Development of prediction models for optimum use of pesticides, pesticide management, and their impact would be of great help in monitoring and controlling the ill effects of excessive use of pesticides. This paper aims to present an exhaustive review of the prediction models developed and modeling strategies used to optimize the use of pesticides.
Collapse
Affiliation(s)
- Edwin Prem Kumar Gilbert
- Department of Information Technology, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India.
| | - Lydia Edwin
- Department of Mechatronics Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
10
|
Li Z. A theorem on a product of lognormal variables and hybrid models for children's exposure to soil contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114393. [PMID: 32222666 DOI: 10.1016/j.envpol.2020.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
This study developed hybrid Bayesian models to investigate the modeling process for children's exposure to soil contaminants, which involves the intrinsic uncertainty of the exposure model, people's judgments regarding random variables, and limited data resources. A hybrid Bayesian p-box was constructed, which was facilitated by a multiple integral dimensionality reduction (MIDR) theorem. The results indicated that exposure frequency (EF) dominated the exposure dose. The hybrid Bayesian p-box for the Frequentist-Bayesian (F-B) model at the 95th percentile of the simulated average daily dose (ADD) values corresponded to a 4.40 order-of-magnitude difference between the upper and lower bounds of the p-box. This considerable uncertainty was magnified by the combination of the highest posterior density (HPD) regions for three groups of the distribution parameters. For the Interior-Bayesian (I-B) hybrid model, the uncertainty of the outcomes, namely, [1.75 × 10-8, 2.18 × 10-8] mg kg-1d-1, was limited by the HPD regions for only one parameter unless the hyperparameters for the variables' distributions were further evaluated. It was concluded that the hybrid models could provide a novel understanding of the complexity of the exposure modeling process compared to the traditional modeling method.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, China.
| |
Collapse
|
11
|
Li Z. A new pseudo-partition coefficient based on a weather-adjusted multicomponent model for mushroom uptake of pesticides from soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113372. [PMID: 31672361 DOI: 10.1016/j.envpol.2019.113372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/28/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, a weather-based multicomponent model was developed based on the unique biostructures and metabolic processes of mushrooms to evaluate their uptake of pesticides from soils, and the effects of temperature and relative humidity on the bioaccumulation of pesticides in mushrooms was comprehensively quantified. Additionally, a new pseudo-partition coefficient between mushrooms and soils was introduced to assess the impacts of different physiochemical properties on the pesticide uptake process. The results indicate that, in general, the pseudo-partition coefficient increases as the relative humidity increases for both the air and soil according to Fick's law of gas diffusion and the spatial competition of molecules, respectively. Meanwhile, the effect of temperature on the pesticide bioaccumulation process is more complex. For most pesticides (e.g., atrazine), the pseudo-partition coefficient that was computed from the transpiration component had a maximum value at a specific temperature due to the temperature dependency of the transpiration and biodegradation processes. For some pesticides (e.g., ethoprophos), the pseudo-partition coefficient of the air-deposition component had a maximum value at a certain temperature that was caused by the ratio of the soil-air internal transfer energy and degradation activation energy of the pesticide. It was also concluded that for relatively low-volatility pesticides, transpiration dominated the bioaccumulation process; this was mainly determined from the pesticide water solubility. For nonbiodegradable pesticides (e.g., lindane), the computed coefficient values were relatively low due to their insolubility in water, which inhibits bioaccumulation in mushrooms and is one of the main reasons for their long-term persistence in soils.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, China.
| |
Collapse
|
12
|
Li Z. A health-based regulatory chain framework to evaluate international pesticide groundwater regulations integrating soil and drinking water standards. ENVIRONMENT INTERNATIONAL 2018; 121:1253-1278. [PMID: 30389383 DOI: 10.1016/j.envint.2018.10.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Pesticide residues in groundwater, mainly transported from contaminated soil, may threaten drinking water sources and cause adverse health effects. Therefore, pesticide groundwater standards were implemented by international environmental agencies to ensure the quality of groundwater, which serves as the direct drinking water source in many countries. However, regulatory inconsistencies are always found among groundwater, soil, drinking water, and even health standards due to the lack of communication among the regulatory processes. This study first developed a health-based regulatory chain framework to analyze pesticide groundwater regulations integrating soil, drinking water, and health regulations. Six regulatory indexes associated with probabilistic risk assessments and pesticide transport modeling were constructed to evaluate the performance of pesticide groundwater regulations identified from 56 countries. Worldwide pesticide groundwater regulations were analyzed by quantifying the impact on the downstream (exposure pathways in general) pesticide drinking water standards and human health and the influence from upstream (environmental pathways in general) soil regulations. The results indicated that in general, worldwide pesticide soil regulations do not encompass a sufficient number of pesticides or provide appropriate standard values to be compatible with groundwater regulations. The computed indexes between pesticide groundwater and drinking water regulations indicated more positive results than soil regulations because most European nations have groundwater regulations that are compatible with those of drinking water. However, most pesticide groundwater regulations could not protect human health according to the health-based indexes. Hopefully, the regulatory framework developed in this study will help environmental agencies comprehensively evaluate and establish pesticide groundwater regulations.
Collapse
Affiliation(s)
- Zijian Li
- Parsons Corporation, Chicago, IL 60606, USA; Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|