1
|
Adlard B, Bonefeld-Jørgensen EC, Dudarev AA, Olafsdottir K, Abass K, Averina M, Ayotte P, Berner J, Byrne S, Caron-Beaudoin É, Drysdale M, Dumas P, Garcia-Barrios J, Gyllenhammar I, Laird B, Lemire M, Aker A, Lignell S, Long M, Norström K, Packull-McCormick S, Petersen MS, Ratelle M, Rautio A, Timmerman A, Toft G, Weihe P, Nøst TH, Wennberg M. Levels and trends of persistent organic pollutants in human populations living in the Arctic. Int J Circumpolar Health 2024; 83:2392405. [PMID: 39288300 PMCID: PMC11409411 DOI: 10.1080/22423982.2024.2392405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
The Arctic Monitoring Assessment Program (AMAP) is tasked with monitoring and assessing the status of environmental contaminants in the Arctic, documenting levels and trends, and producing science-based assessments. The objectives of this paper are to present the current levels of persistent organic pollutants (POPs) across the Arctic, and to identify trends and knowledge gaps as detailed in the most recent AMAP Human Health Assessment Report. Many Arctic populations continue to have elevated levels of these contaminants, and the highest levels of POPs were observed in populations from Greenland, Faroe Islands, and Nunavik (Canada), as well as populations in the coastal Chukotka district (Russia) for legacy POPs only. Concentrations of most POPs are declining in Arctic populations in regions where time trends data exist, although the declines are not consistent across all regions. The exceptions are per- and polyfluoroalkyl substances, with concentrations of some long-chain PFAS such as perfluorononanoic acid increasing in populations in Nunavik, Greenland and Sweden. This paper provides a more extensive summary of levels of contaminants in adults, pregnant women, and children across the Arctic than previous AMAP human health assessments, particularly for levels of long-chain PFAS, which are currently under consideration for inclusion in the Stockholm Convention.
Collapse
Affiliation(s)
- Bryan Adlard
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Eva C Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Greenland Center for Health Research, University of Greenland, Nuussuaq, Greenland
| | - Alexey A Dudarev
- Arctic Environmental Health Department, Northwest Public Health Research Center, St-Petersburg, Russia
| | - Kristin Olafsdottir
- Department of Pharmacology & Toxicology, University of Iceland, Reykjavik, Iceland
| | - Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Maria Averina
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pierre Ayotte
- Centre de recherche du CHU de Québec-Université Laval and INSPQ, Québec City, Québec, Canada
| | - James Berner
- Department of Environment and Health, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | - Sam Byrne
- Department of Biology and Program in Global Health, Middlebury College, Middlebury, USA
| | - Élyse Caron-Beaudoin
- Department of Health and Society, University of Toronto Scarborough, Ontario, Canada
| | - Mallory Drysdale
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Pierre Dumas
- Centre de recherche du CHU de Québec-Université Laval and INSPQ, Québec City, Québec, Canada
| | | | - Irina Gyllenhammar
- Swedish Food Agency, Department of Risk & Benefit Assessment, Uppsala, Sweden
| | - Brian Laird
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Melanie Lemire
- Centre de recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
- Département de médecine sociale et préventive, Institut de biologie intégrative et des systèmes, Université Laval, Québec City, Québec, Canada
| | - Amira Aker
- Centre de recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Sanna Lignell
- Swedish Food Agency, Department of Risk & Benefit Assessment, Uppsala, Sweden
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Karin Norström
- Swedish Environmental Protection Agency, Stockholm, Sweden
| | | | | | - Mylene Ratelle
- School of Public Health, University of Montreal, Montreal, Quebec, Canada
| | - Arja Rautio
- Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Amalie Timmerman
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Pal Weihe
- Department of Research, National Hospital of the Faroe Islands, Torshavn, Faroe Islands
| | - Therese Haugdahl Nøst
- Department of Community Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
- HUNT Research Centre, Norwegian University of Science and Technology, Tromsø, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
- HUNT Centre for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology, Tromsø, Norway
| | - Maria Wennberg
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Chen Z, Wei W, Hu Y, Niu Q, Yan Y. Associations between co-exposure to per- and polyfluoroalkyl substances and metabolic diseases: The mediating roles of inflammation and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176187. [PMID: 39265689 DOI: 10.1016/j.scitotenv.2024.176187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/17/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) pose potential risks to human health. In real-world settings, humans are exposed to various PFAS through numerous pathways. OBJECTIVES This study evaluated the associations between co-exposure to PFAS and obesity and its comorbidities, along with the mediating roles of inflammation and oxidative stress. METHODS We analyzed 11,090 participants from National Health and Nutrition Examination Survey (NHANES), 2003-2018. Linear regression, logistic regression, and generalized additive models were used to assess the individual effects of PFAS exposure on obesity and its comorbidities. The environmental risk score (ERS) was calculated using the adaptive elastic-net model to assess the co-exposure effects. Linear and logistic regression models explored the associations between ERS and obesity and its comorbidities. Mediation analyses explored the roles of inflammatory (neutrophils, lymphocytes, and alkaline phosphatase) and oxidative stress (gamma-glutamyl transferase, total bilirubin, and uric acid) markers in the associations between ERS and obesity and its comorbidities. RESULTS For each unit increase in ERS, the odds of obesity and type 2 diabetes mellitus (T2DM) increased 3.60-fold (95 % CI: 2.03, 6.38) and 1.91-fold (95 % CI: 1.28, 2.86), respectively. For each unit increase in ERS, BMI increased by 2.36 (95 % CI: 1.24, 3.48) kg/m2, waist circumference increased by 6.47 (95 % CI: 3.56, 9.37) cm, and waist-to-height ratio increased by 0.04 (95 % CI: 0.02, 0.06). Lymphocytes, alkaline phosphatase, and total bilirubin were significantly associated with both ERS and obesity, with mediation proportions of 4.17 %, 3.62 %, and 7.37 %, respectively. Lymphocytes, alkaline phosphatase, total bilirubin, and uric acid were significantly associated with both ERS and T2DM, with the mediation proportions of 8.90 %, 8.74 %, 29.73 %, and 38.19 %, respectively. CONCLUSIONS Co-exposure to PFAS was associated with obesity and T2DM, and these associations may be mediated by inflammation and oxidative stress. Further mechanistic and prospective studies are required to verify these associations.
Collapse
Affiliation(s)
- Zuhai Chen
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Wanting Wei
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yunhua Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yizhong Yan
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
3
|
Feng B, Tang P, He S, Peng Z, Mo Y, Zhu L, Wei Q. Associations between antimony exposure and glycated hemoglobin levels in adolescents aged 12-19 years: results from the NHANES 2013-2016. Front Public Health 2024; 12:1439034. [PMID: 39484344 PMCID: PMC11524935 DOI: 10.3389/fpubh.2024.1439034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Objective This study aimed to investigate the association between antimony (Sb) exposure and glycated hemoglobin (HbA1c) levels in adolescents. Methods A cross-sectional study of 751 adolescents aged 12-19 years was conducted via the National Health and Nutrition Examination Survey (NHANES, 2013-2016). Survey-weighted linear regression and restricted cubic spline (RCS) analyses were applied to evaluate the relationship of urinary Sb exposure with HbA1c. Results A significant relationship was observed between urinary Sb concentrations and HbA1c levels (percent change: 0.93; 95% CI: 0.42, 1.45) after full adjustment. After converting urinary Sb levels to a categorical variable by tertiles (T1-T3), the highest quantile was associated with a significant increase in HbA1c (percent change: 1.45; 95% CI: 0.38, 2.53) compared to T1. The RCS models showed a monotonically increasing relationship of urinary Sb with HbA1c. Subgroup analyses revealed a sex-specific relationship between urinary Sb exposure and HbA1c with a significant positive association in males and a non-significant positive association in females. Sensitivity analyses further confirmed the relationship between urinary Sb and HbA1c, even after excluding participants who were overweight or obese (percent change: 1.58%, 95% CI: 0.88, 2.28) and those with serum cotinine levels ≥ 1 ng/mL (percent change: 1.14%, 95% CI: 0.49, 1.80). Conclusion Our findings indicated that increased Sb exposure may correlate with higher HbA1c levels, especially in male adolescents. More studies are needed to further explore and validate the potential mechanisms.
Collapse
Affiliation(s)
- Baoying Feng
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Peng Tang
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Sheng He
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, Guangxi, China
| | - Zhenren Peng
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, Guangxi, China
| | - Yan Mo
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Liqiong Zhu
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Qiufen Wei
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| |
Collapse
|
4
|
Lohmann R, Abass K, Bonefeld-Jørgensen EC, Bossi R, Dietz R, Ferguson S, Fernie KJ, Grandjean P, Herzke D, Houde M, Lemire M, Letcher RJ, Muir D, De Silva AO, Ostertag SK, Rand AA, Søndergaard J, Sonne C, Sunderland EM, Vorkamp K, Wilson S, Weihe P. Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176274. [PMID: 39304148 DOI: 10.1016/j.scitotenv.2024.176274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014-2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.
Collapse
Affiliation(s)
- Rainer Lohmann
- University of Rhode Island, Graduate School of Oceanography, South Ferry Road, Narragansett, RI 02882, USA.
| | - Khaled Abass
- University of Sharjah, College of Health Sciences, Department of Environmental Health Sciences, The United Arab Emirates; University of Oulu, Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, Finland
| | - Eva Cecilie Bonefeld-Jørgensen
- Aarhus University, Center for Arctic Health and Molecular Epidemiology, Department of Public Health, DK-8000 Aarhus C, Denmark; University of Greenland, Greenland Center for Health Research, GL-3905 Nuuk, Greenland
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Steve Ferguson
- Fisheries and Oceans Canada, Arctic Region, Winnipeg, MB R3T 2N6, Canada
| | - Kim J Fernie
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | - Philippe Grandjean
- University of Rhode Island, College of Pharmacy, Kingston, RI 02881, USA; University of Southern Denmark, Department of Public Health, DK-5230 Odense, Denmark
| | - Dorte Herzke
- The Norwegian Institute of Public Health, Division of Climate and Environmental Health, P.O.Box 222, Skøyen 0213, Oslo, Norway; Norwegian Institute for Air Research, Hjalmar Johansen gt 14 9006 Tromsø, Norway
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Mélanie Lemire
- Université Laval, Centre de recherche du CHU de Québec, Département de médecine sociale et préventive & Institut de biologie intégrative et des systèmes, 1030 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Carleton University, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada
| | - Derek Muir
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Amila O De Silva
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Sonja K Ostertag
- University of Waterloo, School of Public Health, 200 University Ave W, Waterloo, Ontario, Canada
| | - Amy A Rand
- Carleton University, Department of Chemistry, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Jens Søndergaard
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Elsie M Sunderland
- Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United States
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606 Stakkevollan, 9296 Tromsø, Norway
| | - Pal Weihe
- The National Hospital of the Faroe Islands, Department of Research, Sigmundargøta 5, FO-100 Torshavn, The Faroe Islands; University of the Faroe Islands, Center of Health Science, Torshavn, The Faroe Islands.
| |
Collapse
|
5
|
He K, Chen R, Xu S, Ding Y, Wu Z, Bao M, He B, Li S. Environmental endocrine disruptor-induced mitochondrial dysfunction: a potential mechanism underlying diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1422752. [PMID: 39211449 PMCID: PMC11357934 DOI: 10.3389/fendo.2024.1422752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Diabetes and its complications significantly affect individuals' quality of life. The etiology of diabetes mellitus and its associated complications is complex and not yet fully understood. There is an increasing emphasis on investigating the effects of endocrine disruptors on diabetes, as these substances can impact cellular processes, energy production, and utilization, ultimately leading to disturbances in energy homeostasis. Mitochondria play a crucial role in cellular energy generation, and any impairment in these organelles can increase susceptibility to diabetes. This review examines the most recent epidemiological and pathogenic evidence concerning the link between endocrine disruptors and diabetes, including its complications. The analysis suggests that endocrine disruptor-induced mitochondrial dysfunction-characterized by disruptions in the mitochondrial electron transport chain, dysregulation of calcium ions (Ca2+), overproduction of reactive oxygen species (ROS), and initiation of signaling pathways related to mitochondrial apoptosis-may be key mechanisms connecting endocrine disruptors to the development of diabetes and its complications.
Collapse
Affiliation(s)
- Kunhui He
- The 1 Affiliate Hospital of Changsha Medical University, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhu Wu
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Alijagic A, Sinisalu L, Duberg D, Kotlyar O, Scherbak N, Engwall M, Orešič M, Hyötyläinen T. Metabolic and phenotypic changes induced by PFAS exposure in two human hepatocyte cell models. ENVIRONMENT INTERNATIONAL 2024; 190:108820. [PMID: 38906088 DOI: 10.1016/j.envint.2024.108820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
PFAS are ubiquitous industrial chemicals with known adverse health effects, particularly on the liver. The liver, being a vital metabolic organ, is susceptible to PFAS-induced metabolic dysregulation, leading to conditions such as hepatotoxicity and metabolic disturbances. In this study, we investigated the phenotypic and metabolic responses of PFAS exposure using two hepatocyte models, HepG2 (male cell line) and HepaRG (female cell line), aiming to define phenotypic alterations, and metabolic disturbances at the metabolite and pathway levels. The PFAS mixture composition was selected based on epidemiological data, covering a broad concentration spectrum observed in diverse human populations. Phenotypic profiling by Cell Painting assay disclosed predominant effects of PFAS exposure on mitochondrial structure and function in both cell models as well as effects on F-actin, Golgi apparatus, and plasma membrane-associated measures. We employed comprehensive metabolic characterization using liquid chromatography combined with high-resolution mass spectrometry (LC-HRMS). We observed dose-dependent changes in the metabolic profiles, particularly in lipid, steroid, amino acid and sugar and carbohydrate metabolism in both cells as well as in cell media, with HepaRG cell line showing a stronger metabolic response. In cells, most of the bile acids, acylcarnitines and free fatty acids showed downregulation, while medium-chain fatty acids and carnosine were upregulated, while the cell media showed different response especially in relation to the bile acids in HepaRG cell media. Importantly, we observed also nonmonotonic response for several phenotypic features and metabolites. On the pathway level, PFAS exposure was also associated with pathways indicating oxidative stress and inflammatory responses. Taken together, our findings on PFAS-induced phenotypic and metabolic disruptions in hepatocytes shed light on potential mechanisms contributing to the broader comprehension of PFAS-related health risks.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro SE-701 82, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Lisanna Sinisalu
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Daniel Duberg
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Oleksandr Kotlyar
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden; Centre for Applied Autonomous Sensor Systems (AASS), Mobile Robotics and Olfaction Lab (MRO), Örebro University, SE-701 82 Örebro, Sweden
| | - Nikolai Scherbak
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Tuulia Hyötyläinen
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
7
|
Qu Y, Sheng N, Ji S, Li Z, Wang J, Pan Y, Hu X, Zheng X, Li Y, Song H, Xie L, Zhang W, Cai J, Zhao F, Zhu Y, Cao Z, Lv Y, Dai J, Shi X. Dietary seafood as a potential modifier in the relationship between per- and polyfluoroalkyl substances (PFASs) burden and prediabetes/diabetes: Insights from a nationally representative cross-sectional study. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134645. [PMID: 38762989 DOI: 10.1016/j.jhazmat.2024.134645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
While seafood is recognized for its beneficial effects on glycemic control, concerns over elevated levels of per- and polyfluoroalkyl substances (PFASs) may deter individuals from its consumption. This study aims to elucidate the relationship between seafood intake, PFASs exposure, and the odds of diabetes. Drawing from the China National Human Biomonitoring data (2017-2018), we assessed the impact of PFASs on the prevalence of prediabetes and diabetes across 10851 adults, including 5253 individuals (48.1%) reporting seafood consumption. Notably, seafood consumers exhibited PFASs levels nearly double those of non-consumers. Multinomial logistic regression identified significant positive associations between serum PFASs concentrations and prediabetes (T3 vs. T1: ORPFOA: 1.64 [1.08-2.49], ORPFNA: 1.59 [1.19-2.13], ORPFDA: 1.56 [1.13-2.17], ORPFHxS: 1.58 [1.18-2.12], ORPFHpS: 1.73 [1.24-2.43], ORPFOS: 1.51 [1.15-1.96], OR6:2 Cl-PFESA: 1.58 [1.21-2.07]). Significant positive association were also found between PFHpS, PFOS, and diabetes. RCS curves indicated significant non-linear relationships between log-transformed PFOA, PFUnDA, PFOS, 6:2 Cl-PFESA, and FBG levels. Subgroup analyses revealed that seafood consumption significantly mitigated the associations between PFASs burdens and prediabetes/diabetes. These findings suggest a protective role of dietary seafood against the adverse effects of PFASs exposure on glycemic disorders, offering insights for dietary interventions aimed at mitigating diabetes risks associated with PFASs.
Collapse
Affiliation(s)
- Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China
| | - Jinghua Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojian Hu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China
| | - Xulin Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China
| | - Linna Xie
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China
| | - Wenli Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 7 Panjiayuan Nanli, Beijing 100021, Chaoyang, China.
| |
Collapse
|
8
|
Schlezinger JJ, Gokce N. Perfluoroalkyl/Polyfluoroalkyl Substances: Links to Cardiovascular Disease Risk. Circ Res 2024; 134:1136-1159. [PMID: 38662859 PMCID: PMC11047059 DOI: 10.1161/circresaha.124.323697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Conservative estimates by the World Health Organization suggest that at least a quarter of global cardiovascular diseases are attributable to environmental exposures. Associations between air pollution and cardiovascular risk have garnered the most headlines and are strong, but less attention has been paid to other omnipresent toxicants in our ecosystem. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are man-made chemicals that are extensively used in industrial and consumer products worldwide and in aqueous film-forming foam utilized in firefighting. As such, our exposure to PFAS is essentially ubiquitous. Given the long half-lives of these degradation-resistant chemicals, virtually, all people are carrying a body burden of PFAS. Health concerns related to PFAS are growing such that the National Academies of Sciences, Engineering and Medicine has recommended standards for clinical follow-up of individuals with high PFAS blood levels, including prioritizing screening for dyslipidemia. The link between PFAS and dyslipidemia has been extensively investigated, and evidence for associations is compelling. However, dyslipidemia is not the only cardiovascular risk factor with which PFAS is associated. Here, we review the epidemiological evidence for links between PFAS of concern identified by the National Academies of Sciences, Engineering and Medicine and risk factors for cardiovascular disease, including overweight/obesity, glucose intolerance, hypertension, dyslipidemia, and hyperuricemia. Moreover, we review the potential connections of PFAS with vascular disease and atherosclerosis. While observational data support associations between the National Academies of Sciences, Engineering and Medicine PFAS and selected cardiac risk factors, additional research is needed to establish causation and better understand how exposure to PFAS leads to the development of these conditions.
Collapse
Affiliation(s)
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Zheng Q, Yan W, Gao S, Li X. The effect of PFAS exposure on glucolipid metabolism in children and adolescents: a meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1261008. [PMID: 38425754 PMCID: PMC10902913 DOI: 10.3389/fendo.2024.1261008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Background Previous studies showed that per- and polyfluoroalkyl substances (PFAS), which are widely found in the environment, can disrupt endocrine homeostasis when they enter the human body. This meta-analysis aimed to evaluate current human epidemiological evidence on the relationship between PFAS exposure and glucolipid metabolism in childhood and adolescence. Methods We searched PubMed, Web of Science, Embase, and Cochrane Library databases, and identified population-based epidemiological studies related to PFAS and glucolipid metabolism indexes that were published before 30 December 2022. The heterogeneity of the included literature was assessed using the I-square (I2) test and statistics Q. Random-effects and fixed-effects models were used to combine the effect size. Subgroup analysis based on age and sex of the study participants was performed. A sensitivity analysis was used to evaluate the robustness and reliability of the combined results. Egger's and Begg's tests were used to analyze publication bias. Results A total of 12 studies were included in this analysis. There was a positive association between PFAS and TC (β = 1.110, 95% CI: 0.601, 1.610) and LDL (β = 1.900, 95% CI: 1.030, 2.770), and a negative association between PFAS and HOMA-IR in children and adolescents (β = -0.130, 95% CI: -0. 200, -0.059). PFOS was significant positive associated with TC (β = 8.22, 95% CI: 3.93, 12.51), LDL (β = (12.04, 95% CI: 5.08, 18.99), and HOMA-IR (β = -0.165, 95% CI: -0.292, -0.038). Subgroup analysis showed that exposure to PFAS in the adolescent group was positively associated with TC and LDL levels, and the relationship was stronger in females. Conclusion PFAS exposure is associated with glucolipid metabolism in children and adolescents. Among them, PFOS may play an important role. Recognition of environmental PFAS exposure is critical for stabilizing the glycolipid metabolism relationship during the growth and development of children and adolescents.
Collapse
Affiliation(s)
- Qingqing Zheng
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wu Yan
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shenghu Gao
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaonan Li
- Department of Children Health Care, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Institute of Pediatric Research, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Ulhaq ZS, Tse WKF. PFHxS Exposure and the Risk of Non-Alcoholic Fatty Liver Disease. Genes (Basel) 2024; 15:93. [PMID: 38254982 PMCID: PMC10815161 DOI: 10.3390/genes15010093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Perfluorohexanesulfonic acid (PFHxS) is a highly prevalent environmental pollutant, often considered to be less toxic than other poly- and perfluoroalkyl substances (PFASs). Despite its relatively lower environmental impact compared to other PFASs, several studies have suggested that exposure to PFHxS may be associated with disruptions of liver function in humans. Nevertheless, the precise pathomechanisms underlying PFHxS-induced non-alcoholic fatty liver disease (NAFLD) remain relatively unclear. Therefore, this study applied our previously published transcriptome dataset to explore the effects of PFHxS exposure on the susceptibility to NAFLD and to identify potential mechanisms responsible for PFHxS-induced NAFLD through transcriptomic analysis conducted on zebrafish embryos. Results showed that exposure to PFHxS markedly aggravated hepatic symptoms resembling NAFLD and other metabolic syndromes (MetS) in fish. Transcriptomic analysis unveiled 17 genes consistently observed in both NAFLD and insulin resistance (IR), along with an additional 28 genes identified in both the adipocytokine signaling pathway and IR. These shared genes were also found within the NAFLD dataset, suggesting that hepatic IR may play a prominent role in the development of PFHxS-induced NAFLD. In conclusion, our study suggests that environmental exposure to PFHxS could be a potential risk factor for the development of NAFLD, challenging the earlier notion of PFHxS being safer as previously claimed.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Research Center for Pre-Clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong 16911, Indonesia
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Aker A, Ayotte P, Caron-Beaudoin É, Ricard S, Gaudreau É, Lemire M. Cardiometabolic health and per and polyfluoroalkyl substances in an Inuit population. ENVIRONMENT INTERNATIONAL 2023; 181:108283. [PMID: 37883911 DOI: 10.1016/j.envint.2023.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION The cardiometabolic health status of Inuit in Nunavik has worsened in the last thirty years. The high concentrations of perfluoroalkyl acids (PFAAs) may be contributing to this since PFAAs have been linked with hypercholesterolemia, diabetes, and high blood pressure. The aim of this study was to examine the association between a PFAAs mixture and lipid profiles, Type II diabetes, prediabetes, and high blood pressure in this Inuit population. METHODS We included 1212 participants of the Qanuilirpitaa? 2017 survey aged 16-80 years. Two mixture models (quantile g-computation and Bayesian Kernel Machine Regression (BKMR)) were used to investigate the associations between six PFAAs (PFHxS, PFOS, PFOA and three long-chain PFAAs (PFNA, PFDA and PFUnDA)) with five lipid profiles and three cardiometabolic outcomes. Non-linearity and interaction between PFAAs were further assessed. RESULTS An IQR increase in all PFAAs congeners resulted in an increase in total cholesterol (β 0.15, 95% confidence interval (CI) 0.06, 0.24), low-density lipoprotein cholesterol (LDL) (β 0.08, 95% CI 0.01, 0.16), high-density lipoprotein cholesterol (HDL) (β 0.04, 95% CI 0.002, 0.08), apolipoprotein B-100 (β 0.03, 95% CI 0.004, 0.05), and prediabetes (OR 1.80, 95% CI 1.11, 2.91). There was no association between PFAAs and triglycerides, diabetes, or high blood pressure. Long-chain PFAAs congeners were the main contributors driving the associations. Associations were largely linear, and there was no evidence of interaction between the PFAAs congeners. CONCLUSIONS Our study provides further evidence of increasing circulating lipids with increased exposure to PFAAs. The increased risk of prediabetes points to the influence of PFAAs on potential clinical outcomes. International regulation of PFAAs is essential to curb PFAAs exposure and related health effects in Arctic communities.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada.
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Élyse Caron-Beaudoin
- Department of Health and Society, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Quebec, Canada; Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
12
|
Chang MC, Chung SM, Kwak SG. Exposure to perfluoroalkyl and polyfluoroalkyl substances and risk of stroke in adults: a meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 0:reveh-2023-0021. [PMID: 37656598 DOI: 10.1515/reveh-2023-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/18/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION Evidence of the adverse metabolic health effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) is increasing. However, the impact of PFAS on cardiovascular diseases remains controversial. This meta-analysis aimed to analyze the impact of PFAS on the stroke risk. CONTENT Databases were searched for studies published up to November 1, 2022, which report the association between stroke and exposure to at least one of four main PFAS (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS], perfluorononanoic acid [PFNA], and perfluorohexane sulfonic acid [PFHxS]). Data extraction and quality assessment were performed according to the Newcastle-Ottawa scale. SUMMARY AND OUTLOOK Four studies were included in this systematic review. Multivariate adjusted odds ratios (ORs) for incident stroke per 1-log unit increment in each serum PFAS were combined in the meta-analysis. The risk of development of stroke was not significantly associated with PFOA, PFOS, or PFNA exposure (PFOA: pooled odds ratio [OR]=1.001, 95 % confidence interval [CI]=0.975-1.028, p=0.934; PFOS: pooled OR=0.994, 95 % CI=0.972-1.017, p=0.601; PFNA: pooled OR=1.016, 95 % CI=0.920-1.123, p=0.752), whereas a moderately lower risk was associated with PFHxS exposure without statistical significance (pooled OR=0.953, 95 % CI=0.908-1.001, p=0.054). PFOA, PFOS, and PFNA exposure showed a neutral association, while PFHxS showed a possible inverse association with the risk of stroke. Therefore, this finding should be interpreted with caution. Further prospective observational studies with PFAS mixture analyses are warranted.
Collapse
Affiliation(s)
- Min Cheol Chang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Seung Min Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Sang Gyu Kwak
- Department of Medical Statistics, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| |
Collapse
|
13
|
India-Aldana S, Yao M, Midya V, Colicino E, Chatzi L, Chu J, Gennings C, Jones DP, Loos RJF, Setiawan VW, Smith MR, Walker RW, Barupal D, Walker DI, Valvi D. PFAS Exposures and the Human Metabolome: A Systematic Review of Epidemiological Studies. CURRENT POLLUTION REPORTS 2023; 9:510-568. [PMID: 37753190 PMCID: PMC10520990 DOI: 10.1007/s40726-023-00269-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/28/2023]
Abstract
Purpose of Review There is a growing interest in understanding the health effects of exposure to per- and polyfluoroalkyl substances (PFAS) through the study of the human metabolome. In this systematic review, we aimed to identify consistent findings between PFAS and metabolomic signatures. We conducted a search matching specific keywords that was independently reviewed by two authors on two databases (EMBASE and PubMed) from their inception through July 19, 2022 following PRISMA guidelines. Recent Findings We identified a total of 28 eligible observational studies that evaluated the associations between 31 different PFAS exposures and metabolomics in humans. The most common exposure evaluated was legacy long-chain PFAS. Population sample sizes ranged from 40 to 1,105 participants at different stages across the lifespan. A total of 19 studies used a non-targeted metabolomics approach, 7 used targeted approaches, and 2 included both. The majority of studies were cross-sectional (n = 25), including four with prospective analyses of PFAS measured prior to metabolomics. Summary Most frequently reported associations across studies were observed between PFAS and amino acids, fatty acids, glycerophospholipids, glycerolipids, phosphosphingolipids, bile acids, ceramides, purines, and acylcarnitines. Corresponding metabolic pathways were also altered, including lipid, amino acid, carbohydrate, nucleotide, energy metabolism, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. We found consistent evidence across studies indicating PFAS-induced alterations in lipid and amino acid metabolites, which may be involved in energy and cell membrane disruption.
Collapse
Affiliation(s)
- Sandra India-Aldana
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Vishal Midya
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ruth J. F. Loos
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Faculty of Health and Medical Sciences, Novo Nordisk
Foundation Center for Basic Metabolic Research, University of Copenhagen,
Copenhagen, Denmark
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mathew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ryan W. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| |
Collapse
|
14
|
Dunder L, Salihovic S, Elmståhl S, Lind PM, Lind L. Associations between per- and polyfluoroalkyl substances (PFAS) and diabetes in two population-based cohort studies from Sweden. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:748-756. [PMID: 36964247 PMCID: PMC10541316 DOI: 10.1038/s41370-023-00529-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) have been suggested to contribute to the development of metabolic diseases such as obesity, diabetes and non-alcoholic fatty liver disease (NAFLD). However, evidence from epidemiological studies remain divergent. The aim of the present study was to evaluate associations between PFAS exposure and prevalent diabetes in a cross-sectional analysis and fasting glucose in a longitudinal analysis. METHODS In 2373 subjects aged 45-75 years from the EpiHealth study, three PFAS; perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were analyzed in plasma together with information on prevalent diabetes. Participants in the PIVUS study (n = 1016 at baseline, all aged 70 years) were followed over 10 years regarding changes in plasma levels of six PFAS; PFHxS, PFOA, PFOS, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA), and changes in plasma levels of fasting glucose. RESULTS In the EpiHealth study, no overall associations could be observed between the levels of PFOA, PFOS or PFHxS and prevalent diabetes. However, there was a significant sex-interaction for PFOA (p = 0.02), and an inverse association could be seen between PFOA (on a SD-scale) and prevalent diabetes in women only (OR: 0.71, 95% CI: 0.52, 0.96, p-value: 0.02). This association showed a non-monotonic dose-response curve. In the PIVUS study, inverse relationships could be observed between the changes in levels (ln-transformed) of PFOA and PFUnDA vs the change in fasting glucose levels (ln-transformed) over 10 years (p = 0.04 and p = 0.02, respectively). As in EpiHealth, these inverse associations were significant only in women (PFOA: β: -0.03, p = 0.02, PFUnDA: β: -0.03, p = 0.03). IMPACT Exposure to per- and polyfluoroalkyl substances (PFAS) has been linked to unfavorable human health, including metabolic disorders such as obesity, diabetes and non-alcoholic fatty liver disease. However, results from in vivo, in vitro and epidemiological studies are incoherent. The aim of the present study was therefore to investigate associations between PFAS and diabetes in a cross-sectional study and glucose levels in a longitudinal study. Results show inverse associations in women only. Results also display non-monotonic dose response curves (i.e., that only low levels of PFOA are related to higher probability of prevalent diabetes). This suggests that sex differences and complex molecular mechanisms may underlie the observed findings. A better understanding of the factors and molecular mechanisms contributing to such differences is recognized as an important direction for future research. CONCLUSIONS PFOA was found to be inversely related to both prevalent diabetes and changes in plasma glucose levels among women only. Thus, our findings suggest there are sex differences in the inverse relationship of PFOA and type 2 diabetes and glucose levels.
Collapse
Affiliation(s)
- Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
| | | | - Sölve Elmståhl
- Division of Geriatric Medicine, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Valvi D, Christiani DC, Coull B, Højlund K, Nielsen F, Audouze K, Su L, Weihe P, Grandjean P. Gene-environment interactions in the associations of PFAS exposure with insulin sensitivity and beta-cell function in a Faroese cohort followed from birth to adulthood. ENVIRONMENTAL RESEARCH 2023; 226:115600. [PMID: 36868448 PMCID: PMC10101920 DOI: 10.1016/j.envres.2023.115600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFAS) has been associated with changes in insulin sensitivity and pancreatic beta-cell function in humans. Genetic predisposition to diabetes may modify these associations; however, this hypothesis has not been yet studied. OBJECTIVES To evaluate genetic heterogeneity as a modifier in the PFAS association with insulin sensitivity and pancreatic beta-cell function, using a targeted gene-environment (GxE) approach. METHODS We studied 85 single-nucleotide polymorphisms (SNPs) associated with type 2 diabetes, in 665 Faroese adults born in 1986-1987. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were measured in cord whole blood at birth and in participants' serum from age 28 years. We calculated the Matsuda-insulin sensitivity index (ISI) and the insulinogenic index (IGI) based on a 2 h-oral glucose tolerance test performed at age 28. Effect modification was evaluated in linear regression models adjusted for cross-product terms (PFAS*SNP) and important covariates. RESULTS Prenatal and adult PFOS exposures were significantly associated with decreased insulin sensitivity and increased beta-cell function. PFOA associations were in the same direction but attenuated compared to PFOS. A total of 58 SNPs were associated with at least one PFAS exposure variable and/or Matsuda-ISI or IGI in the Faroese population and were subsequently tested as modifiers in the PFAS-clinical outcome associations. Eighteen SNPs showed interaction p-values (PGxE) < 0.05 in at least one PFAS-clinical outcome association, five of which passed False Discovery Rate (FDR) correction (PGxE-FDR<0.20). SNPs for which we found stronger evidence for GxE interactions included ABCA1 rs3890182, FTO rs9939609, FTO rs3751812, PPARG rs170036314 and SLC12A3 rs2289116 and were more clearly shown to modify the PFAS associations with insulin sensitivity, rather than with beta-cell function. DISCUSSION Findings from this study suggest that PFAS-associated changes in insulin sensitivity could vary between individuals as a result of genetic predisposition and warrant replication in independent larger populations.
Collapse
Affiliation(s)
- Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Flemming Nielsen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands; Centre of Health Science, Faculty of Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Kim M, Kim SH, Choi JY, Park YJ. Investigating fatty liver disease-associated adverse outcome pathways of perfluorooctane sulfonate using a systems toxicology approach. Food Chem Toxicol 2023; 176:113781. [PMID: 37059384 DOI: 10.1016/j.fct.2023.113781] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Adverse outcome pathway (AOP) frameworks help elucidate toxic mechanisms and support chemical regulation. AOPs link a molecular initiating event (MIE), key events (KEs), and an adverse outcome by key event relationships (KERs), which assess the biological plausibility, essentiality, and empirical evidence involved. Perfluorooctane sulfonate (PFOS), a hazardous poly-fluoroalkyl substance, demonstrates hepatotoxicity in rodents. PFOS may induce fatty liver disease (FLD) in humans; however, the underlying mechanism remains unclear. In this study, we evaluated the toxic mechanisms of PFOS-associated FLD by developing an AOP using publicly available data. We identified MIE and KEs by performing GO enrichment analysis on PFOS- and FLD-associated target genes collected from public databases. The MIEs and KEs were then prioritized by PFOS-gene-phenotype-FLD networks, AOP-helpFinder, and KEGG pathway analyses. Following a comprehensive literature review, an AOP was then developed. Finally, six KEs for the AOP of FLD were identified. This AOP indicated that toxicological processes initiated by SIRT1 inhibition led to SREBP-1c activation, de novo fatty acid synthesis, and fatty acid and triglyceride accumulation, culminating in liver steatosis. Our study provides insights into the toxic mechanism of PFOS-induced FLD and suggests approaches to assessing the risk of toxic chemicals.
Collapse
Affiliation(s)
- Moosoo Kim
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Sang Heon Kim
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Jun Yeong Choi
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea.
| |
Collapse
|
17
|
Zang L, Liu X, Xie X, Zhou X, Pan Y, Dai J. Exposure to per- and polyfluoroalkyl substances in early pregnancy, risk of gestational diabetes mellitus, potential pathways, and influencing factors in pregnant women: A nested case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121504. [PMID: 36965679 DOI: 10.1016/j.envpol.2023.121504] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/27/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Although previous studies have reported an association between maternal serum perfluoroalkyl substance (PFAS) exposure and gestational diabetes mellitus (GDM) risk, results have been inconsistent. Few studies have focused on the combined effects of emerging and legacy PFASs on glucose homeostasis while humans are always exposed to multiple PFASs simultaneously. Moreover, the potential pathways by which PFAS exposure induces GDM are unclear. A total of 295 GDM cases and 295 controls were enrolled from a prospective cohort of 2700 pregnant women in Shanghai, China. In total, 16 PFASs were determined in maternal spot serum samples in early pregnancy. We used conditional logistic regression, multiple linear regression, and Bayesian kernel machine regression (BKMR) to examine individual and joint effects of PFAS exposure on GDM risk and oral glucose tolerance test outcomes. The mediating effects of maternal serum biochemical parameters, including thyroid and liver function were further assessed. Maternal perfluorooctanoic acid (PFOA) exposure was associated with an increased risk of GDM (odds ratio (OR) = 1.68; 95% confidence interval (95% CI): 1.10, 2.57), consistent with higher concentrations in GDM cases than controls. Based on mediation analysis, an increase in the free triiodothyronine to free thyroxine ratio partially explained the effect of this association. For continuous glycemic outcomes, positive associations were observed between several PFASs and 1-h and 2-h glucose levels. In BKMR, PFAS mixture exposure showed a positive trend with GDM incidence, although the CIs were wide. These associations were more pronounced among women with normal pre-pregnancy body mass index (BMI). Mixed PFAS congeners may affect glucose homeostasis by increasing 1-h glucose levels, with perfluorononanoic acid found to be a main contributor. Exposure to PFASs was associated with increased risk of GDM and disturbance in glucose homeostasis, especially in normal weight women. The PFAS-associated disruption of maternal thyroid function may alter glucose homeostasis.
Collapse
Affiliation(s)
- Lu Zang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaorui Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xianjing Xie
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
18
|
Ojemaye CY, Ojemaye MO, Okoh AI, Okoh OO. Evaluation of the research trends on perfluorinated compounds using bibliometric analysis: knowledge gap and future perspectives. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:570-595. [PMID: 37128712 DOI: 10.1080/10934529.2023.2203639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Detection of perfluorinated compounds (PFCs) in the environment has been a global concern because of the risk they pose due to their endocrine-disruptive properties. This study analyzed the global trends and research productivity of PFCs from 1990 to 2021. A total number of 3256 articles on PFCs were retrieved from the Web of Science focusing on different environmental and biological matrices. An increase in the productivity of research on PFCs was observed during the survey period which indicates that more research and publications on this class of contaminants are expected in the future. Evaluating the most productive countries and the number of citations per country on PFCs research shows that China and the United States of America were ranked in first and second places. It was also observed that research on PFCs received the most attention from scientists in developed countries, with little research emerging from Africa. Hence, research on PFCs in developing countries, especially low-income countries should be promoted. Consequently, more research programs should be implemented to investigate PFCs in countries and regions where research on these contaminants is low. The study will help researchers, government agencies and policymakers to tailor future research, allocation of funds to PFCs research and countries' collaboration.
Collapse
Affiliation(s)
- Cecilia Y Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
| | - Mike O Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Environmental health Sciences, College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola O Okoh
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
19
|
Hall AM, Braun JM. Per- and Polyfluoroalkyl Substances and Outcomes Related to Metabolic Syndrome: A Review of the Literature and Current Recommendations for Clinicians. Am J Lifestyle Med 2023. [DOI: 10.1177/15598276231162802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of toxic, ubiquitous, anthropogenic chemicals known to bioaccumulate in humans. Substantial concern exists regarding the human health effects of PFAS, particularly metabolic syndrome (MetS), a precursor to cardiovascular disease, the leading cause of mortality worldwide. This narrative review provides an overview of the PFAS literature on 4 specific components of MetS: insulin resistance/glucose dysregulation, central adiposity, dyslipidemia, and blood pressure. We focus on prospective cohort studies as these provide the best body of evidence compared to other study designs. Available evidence suggests potential associations between some PFAS and type-2 diabetes in adults, dyslipidemia in children and adults, and blood pressure in adults. Additionally, some studies found that sex and physical activity may modify these relationships. Future studies should consider modification by sex and lifestyle factors (e.g., diet and physical activity), as well quantifying the impact of PFAS mixtures on MetS features and related clinical disease. Finally, clinicians can follow recently developed clinical guidance to screen for PFAS exposure in patients, measure PFAS levels, conduct additional clinical care based on PFAS levels, and advise on PFAS exposure reduction.
Collapse
Affiliation(s)
- Amber M. Hall
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
20
|
Li H, Chen J, Yang J, Tan Z, Li L, Xiao F, An Z, Ma C, Liu Y, Wang L, Zhang X, Guo H. Association of exposure to perfluoroalkyl substances and risk of the acute coronary syndrome: A case-control study in Shijiazhuang Hebei Province. CHEMOSPHERE 2023; 313:137464. [PMID: 36495974 DOI: 10.1016/j.chemosphere.2022.137464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/03/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Exposures to perfluoroalkyl substances (PFAS) have been reported to increase the risk of atherosclerosis. Therefore, PFAS exposure may be linked to the risk of acute coronary syndrome (ACS), but this association remains uncertain. The objective of the present study was to investigate the association between PFAS exposure and ACS risk through a case-control study. The study included 355 newly diagnosed ACS cases and 355 controls matched by age (within 5 years) and sex. Twelve PFAS were measured in plasma by ultra-high-performance liquid chromatography-tandem mass spectrometry. The conditional logistic regression models were performed to investigate the association between the single and multiple PFAS and ACS risk. Furthermore, we investigated the association of PFAS mixture exposure with ACS risk using a quantile-based g-computation (qgcomp) approach. A mediating effect model was used to assess the mediating effect of platelet indices on the association between PFAS and ACS risk. The results showed that perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) were significantly positively associated with ACS risk in the multiple-PFAS model 2, and this effect was not significant in females. The odds ratios (95% confidence intervals) for PFAS (z-score PFAS) and ACS risk were 1.51 (1.07, 2.15) for PFOA and 1.77 (1.15, 2.72) for PFOS. The dose-response relationships revealed an increasing trend for ACS risk with PFOA and PFOS and decreasing trend for perfluorohexane sulfonic acid (PFHxS) and perfluorodecanoic acid (PFDA). There was no significant correlation between PFAS mixture exposure and ACS risk. Analysis of mediation indicated that platelet count mediated the relationship between PFOS and ACS risk. Our study suggests that higher levels of PFOA and PFOS, and lower levels of PFHxS and PFDA may increase the risk of ACS. However, the reported negative associations should not be considered as protective, and uncertain unresolved confounding may contribute to this result.
Collapse
Affiliation(s)
- Haoran Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jinbo Chen
- Department of Cardiology, The Second Hospital of Shijiazhuang, Shijiazhuang, 050057, China
| | - Jing Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Fang Xiao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Chaoying Ma
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Lei Wang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoguang Zhang
- Core Facilities and Centers of Hebei Medical University, Shijiazhuang, 050017, China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| |
Collapse
|
21
|
Schillemans T, Bergdahl IA, Hanhineva K, Shi L, Donat-Vargas C, Koponen J, Kiviranta H, Landberg R, Åkesson A, Brunius C. Associations of PFAS-related plasma metabolites with cholesterol and triglyceride concentrations. ENVIRONMENTAL RESEARCH 2023; 216:114570. [PMID: 36243049 DOI: 10.1016/j.envres.2022.114570] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The wide-spread environmental pollutants per- and polyfluoroalkyl substances (PFAS) have repeatedly been associated with elevated serum cholesterol in humans. However, underlying mechanisms are still unclear. Furthermore, we have previously observed inverse associations with plasma triglycerides. To better understand PFAS-induced effects on lipid pathways we investigated associations of PFAS-related metabolite features with plasma cholesterol and triglyceride concentrations. We used 290 PFAS-related metabolite features that we previously discovered from untargeted liquid chromatography-mass spectometry metabolomics in a case-control study within the Swedish Västerbotten Intervention Programme cohort. Herein, we studied associations of these PFAS-related metabolite features with plasma cholesterol and triglyceride concentrations in plasma samples from 187 healthy control subjects collected on two occasions between 1991 and 2013. The PFAS-related features did not associate with cholesterol, but 50 features were associated with triglycerides. Principal component analysis on these features indicated that one metabolite pattern, dominated by glycerophospholipids, correlated with longer chain PFAS and associated inversely with triglycerides (both cross-sectionally and prospectively), after adjustment for confounders. The observed time-trend of the metabolite pattern resembled that of the longer chain PFAS, with higher levels during the years 2004-2010. Mechanisms linking PFAS exposures to triglycerides may thus occur via longer chain PFAS affecting glycerophospholipid metabolism. If the results reflect a cause-effect association, as implied by the time-trend and prospective analyses, this may affect the general adult population.
Collapse
Affiliation(s)
- T Schillemans
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - I A Bergdahl
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - K Hanhineva
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Department of Life Technologies, University of Turku, Turku, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - L Shi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an, China
| | - C Donat-Vargas
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, CEI UAM+CSIC, Madrid, Spain
| | - J Koponen
- Department for Health Security, Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - H Kiviranta
- Department for Health Security, Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - R Landberg
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - A Åkesson
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - C Brunius
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
22
|
Gui SY, Qiao JC, Xu KX, Li ZL, Chen YN, Wu KJ, Jiang ZX, Hu CY. Association between per- and polyfluoroalkyl substances exposure and risk of diabetes: a systematic review and meta-analysis. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:40-55. [PMID: 35970987 DOI: 10.1038/s41370-022-00464-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emerging evidence suggests that per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors and may contribute to the etiology of diabetes. OBJECTIVES This study aimed to systematically review the epidemiological evidence on the associations of PFAS with mortality and morbidity of diabetes and to quantitatively evaluate the summary effect estimates of the existing literature. METHODS We searched three electronic databases for epidemiological studies concerning PFAS and diabetes published before April 1, 2022. Summary odds ratio (OR), hazard ratio (HR), or β and their 95% confidence intervals (CIs) were respectively calculated to evaluate the association between PFAS and diabetes using random-effects model by the exposure type, and dose-response meta-analyses were also performed when possible. We also assessed the risk of bias of the studies included and the confidence in the body of evidence. RESULTS An initial literature search identified 1969 studies, of which 22 studies were eventually included. The meta-analyses indicated that the observed statistically significant PFAS-T2DM associations were consistent in cohort studies, while the associations were almost non-significant in case-control and cross-sectional studies. Dose-response meta-analysis showed a "parabolic-shaped" association between perfluorooctanoate acid (PFOA) exposure and T2DM risk. Available evidence was rated with "low" risk of bias, and the level of evidence for PFAS and incident T2DM was considered "moderate". CONCLUSIONS Our findings suggest that PFAS exposure may increase the risk of incident T2DM, and that PFOA may exert non-monotonic dose-response effect on T2DM risk. Considering the widespread exposure, persistence, and potential for adverse health effects of PFAS, further cohort studies with improvements in expanding the sample size, adjusting the covariates, and considering different types of PFAS exposure at various doses, are needed to elucidate the putative causal associations and potential mode of action of different PFAS on diabetes. IMPACT STATEMENT A growing body of evidence suggests that per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors and may contribute to the development of diabetes. However, epidemiological evidence on the associations of PFAS and diabetes is inconsistent. We performed this comprehensive systematic review and meta-analysis to quantitatively synthesize the evidence. The findings of this study suggest that exposure to PFAS may increase diabetes risk among the general population. Reduced exposure to these "forever and everywhere chemicals" may be an important preventative approach to reducing the risk of diabetes across the population.
Collapse
Affiliation(s)
- Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jian-Chao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ke-Xin Xu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ze-Lian Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Yue-Nan Chen
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ke-Jia Wu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China.
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
23
|
Liu M, Li A, Li Y, Zhang Q, Jiang G. Response to Comment on "Associations between Novel and Legacy Per- and Polyfluoroalkyl Substances in Human Serum and Thyroid Cancer: A Case and Healthy Population in Shandong Province, East China". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13512-13514. [PMID: 36048160 DOI: 10.1021/acs.est.2c05480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois60612, United States
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310000, China
| |
Collapse
|
24
|
Roth K, Petriello MC. Exposure to per- and polyfluoroalkyl substances (PFAS) and type 2 diabetes risk. Front Endocrinol (Lausanne) 2022; 13:965384. [PMID: 35992116 PMCID: PMC9388934 DOI: 10.3389/fendo.2022.965384] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous man-made chemicals found in consumer products including fabrics, food packaging, non-stick coatings, and aqueous film-forming foams. PFAS are stable and extremely resistant to degradation, resulting in high persistence throughout the environment as well as in human blood. PFAS consist of a large family of synthetic chemicals, with over 4000 distinct varieties having been identified and around 250 currently being manufactured at globally relevant levels. Numerous epidemiological studies have linked exposure to PFAS with adverse health effects ranging from immunotoxicity, cardiometabolic disease, developmental and reproductive effects, cancer, and recently type 2 diabetes. Several studies have demonstrated associations between serum PFAS concentrations and glycemic indicators of type 2 diabetes including glucose, insulin, and HOMA-IR in adolescent and adult cohorts. In addition, some studies have shown positive associations with incident type 2 diabetes and multiple PFAS. However, the link between PFAS exposure and the development of diabetes continues to be a disputed area of study, with conflicting data having been reported from various epidemiological studies. In this mini review we will summarize the current state of the literature linking PFAS to type 2 diabetes and discuss important future directions including the use of more complex mixtures-based statistical analyses.
Collapse
Affiliation(s)
- Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Michael C. Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
25
|
Park SK, Wang X, Ding N, Karvonen-Gutierrez CA, Calafat AM, Herman WH, Mukherjee B, Harlow SD. Per- and polyfluoroalkyl substances and incident diabetes in midlife women: the Study of Women's Health Across the Nation (SWAN). Diabetologia 2022; 65:1157-1168. [PMID: 35399113 PMCID: PMC9177697 DOI: 10.1007/s00125-022-05695-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS Diabetogenic effects of per- and polyfluoroalkyl substances (PFAS) have been suggested. However, evidence based on prospective cohort studies is limited. We examined the association between serum PFAS concentrations and incident diabetes in the Study of Women's Health Across the Nation Multi-Pollutant Study (SWAN-MPS). METHODS We included 1237 diabetes-free women aged 45-56 years at baseline (1999-2000) who were followed up to 2017. At each follow-up visit, women with incident diabetes were identified by the presence of one or more of the following conditions: (1) use of a glucose-lowering medication at any visit; (2) fasting glucose ≥7 mmol/l on two consecutive visits while not on steroids; and (3) any two visits with self-reported diabetes and at least one visit with fasting blood glucose ≥7 mmol/l. Serum concentrations of 11 PFAS were quantified by online solid-phase extraction-HPLC-isotope dilution-tandem MS. Seven PFAS with high detection rates (>96%) (n-perfluorooctanoic acid [n-PFOA], perfluorononanoic acid [PFNA], perfluorohexane sulfonic acid [PFHxS], n-perfluorooctane sulfonic acid [n-PFOS], sum of perfluoromethylheptane sulfonic acid isomers [Sm-PFOS], 2-[N-methyl-perfluorooctane sulfonamido] acetic acid [MeFOSAA] and 2-[N-ethyl-perfluorooctane sulfonamido] acetic acid) were included in data analysis. Cox proportional hazards models were used to compute HRs and 95% CIs. Quantile-based g-computation was used to evaluate the joint effects of PFAS mixtures. RESULTS After adjustment for race/ethnicity, site, education, smoking status, alcohol consumption, total energy intake, physical activity, menopausal status and BMI, the HR (95% CI) comparing the lowest with the highest tertile was 1.67 (1.21, 2.31) for n-PFOA (ptrend = 0.001), 1.58 (1.13, 2.21) for PFHxS (ptrend = 0.003), 1.36 (0.97, 1.90) for Sm-PFOS (ptrend = 0.05), 1.85 (1.28, 2.67) for MeFOSAA (ptrend = 0.0004) and 1.64 (1.17, 2.31) for the sum of four common PFAS (n-PFOA, PFNA, PFHxS and total PFOS) (ptrend = 0.002). Exposure to seven PFAS as mixtures was associated with an HR of 2.62 (95% CI 1.12, 6.20), comparing the top with the bottom tertiles for all seven PFAS. CONCLUSIONS/INTERPRETATION This study suggests that PFAS may increase diabetes risk in midlife women. Reduced exposure to these 'forever and everywhere chemicals' may be an important preventative approach to lowering population-wide diabetes risk.
Collapse
Affiliation(s)
- Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - Xin Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ning Ding
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William H Herman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Siobán D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Cakmak S, Lukina A, Karthikeyan S, Atlas E, Dales R. The association between blood PFAS concentrations and clinical biochemical measures of organ function and metabolism in participants of the Canadian Health Measures Survey (CHMS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:153900. [PMID: 35218824 DOI: 10.1016/j.scitotenv.2022.153900] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 05/26/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are ubiquitous and may persist in human tissue for several years. Only a small proportion of PFAS have been studied for human health effects. We tested the association between human blood levels of six PFAS and several clinical measures of organ and metabolic function in a nationally representative sample of 6768 participants aged 3-79 years old who participated in the Canadian Health Measures Survey. Cross-sectional associations were assessed by generalized linear mixed models incorporating survey-specific sampling weights. An increase in perfluorooctanoic acid (PFOA) equivalent to the magnitude of its geometric mean (GM) of 2.0 μg/L was associated with percentage (95% CI) increases in serum enzymes reflecting liver function: aspartate aminotransferase (AST) 3.7 (1.1, 6.4), gamma-glutamyl transferase (GGT) 11.8 (2.5, 21.8), alanine aminotransferase (ALT) 3.2 (0.5, 5.9), and bilirubin 3.6 (2.7, 4.5). A GM increase in perfluorodecanoic acid (PFDA) of 0.2 μg/L was positively associated with percentage increases in GGT, triglycerides, low-density lipoprotein (LDL) cholesterol, total cholesterol, and calcium with respective increases of 15.5 (2.2, 30.4), 7.0 (1.0, 13.2), 10.7 (5.5, 16.1), 2.8 (0.2, 5.3), and 0.8 (0.3, 1.3). PFOA, perfluorooctane sulfonate (PFOS), PFDA and perfluorononanoic acid (PFNA) were positively associated with GGT. All six congeners were positively associated with at least one biomarker of lipid metabolism, and 5 of 6, PFOA, PFOS, PFDA, perfluorohexane sulfonate (PFHxS) and PFNA were positively associated with serum calcium. Exposure to selected PFAS is associated with clinical blood tests reflecting metabolism and the function of several organ systems. These relatively small changes may possibly indicate early pathology that is clinically inapparent and may possibly be of significance in a general population or in individuals exposed to very high levels of PFAS.
Collapse
Affiliation(s)
- Sabit Cakmak
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Anna Lukina
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Subramanian Karthikeyan
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Ella Atlas
- Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Robert Dales
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada; University of Ottawa and Ottawa Hospital Research Institute, Canada.
| |
Collapse
|
27
|
Qin W, Ren X, Zhao L, Guo L. Exposure to perfluorooctane sulfonate reduced cell viability and insulin release capacity of β cells. J Environ Sci (China) 2022; 115:162-172. [PMID: 34969446 DOI: 10.1016/j.jes.2021.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 05/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are found to have multiple adverse outcomes on human health. Recently, epidemiological and toxicological studies showed that exposure to PFAS had adverse impacts on pancreas and showed association with insulin abnormalities. To explore how PFAS may contribute to diabetes, we studied impacts of perfluorooctane sulfonate (PFOS) on cell viability and insulin release capacity of pancreatic β cells by using in vivo and in vitro methods. We found that 28-day administration with PFOS (10 mg/(kg body weight•day)) caused reductions of pancreas weight and islet size in male mice. PFOS administration also led to lower serum insulin level both in fasting state and after glucose infusion among male mice. For cell-based in vitro bioassay, we used mouse β-TC-6 cancer cells and found 48-hr exposure to PFOS decreased the cell viability at 50 μmol/L. By measuring insulin content in supernatant, 48-hr pretreatment of PFOS (100 μmol/L) decreased the insulin release capacity of β-TC-6 cells after glucose stimulation. Although these concentrations were higher than the environmental concentration of PFOS, it might be reasonable for high concentration of PFOS to exert observable toxic effects in mice considering mice had a faster removal efficiency of PFOS than human. PFOS exposure (50 μmol/L) to β-TC-6 cells induced intracellular accumulation of reactive oxidative specie (ROS). Excessive ROS induced the reactive toxicity of cells, which eventually invoke apoptosis and necrosis. Results in this study provide evidence for the possible causal link of exposure to PFOS and diabetes risk.
Collapse
Affiliation(s)
- Weiping Qin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomin Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lianghong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
28
|
Hoyeck MP, Matteo G, MacFarlane EM, Perera I, Bruin JE. Persistent organic pollutants and β-cell toxicity: a comprehensive review. Am J Physiol Endocrinol Metab 2022; 322:E383-E413. [PMID: 35156417 PMCID: PMC9394781 DOI: 10.1152/ajpendo.00358.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023]
Abstract
Persistent organic pollutants (POPs) are a diverse family of contaminants that show widespread global dispersion and bioaccumulation. Humans are continuously exposed to POPs through diet, air particles, and household and commercial products; POPs are consistently detected in human tissues, including the pancreas. Epidemiological studies show a modest but consistent correlation between exposure to POPs and increased diabetes risk. The goal of this review is to provide an overview of epidemiological evidence and an in-depth evaluation of the in vivo and in vitro evidence that POPs cause β-cell toxicity. We review evidence for six classes of POPs: dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), flame retardants, and per- and polyfluoroalkyl substances (PFAS). The available data provide convincing evidence implicating POPs as a contributing factor driving impaired glucose homeostasis, β-cell dysfunction, and altered metabolic and oxidative stress pathways in islets. These findings support epidemiological data showing that POPs increase diabetes risk and emphasize the need to consider the endocrine pancreas in toxicity assessments. Our review also highlights significant gaps in the literature assessing islet-specific endpoints after both in vivo and in vitro POP exposure. In addition, most rodent studies do not consider the impact of biological sex or secondary metabolic stressors in mediating the effects of POPs on glucose homeostasis and β-cell function. We discuss key gaps and limitations that should be assessed in future studies.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Geronimo Matteo
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erin M MacFarlane
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer E Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Schillemans T, Donat-Vargas C, Lindh CH, de Faire U, Wolk A, Leander K, Åkesson A. Per- and Polyfluoroalkyl Substances and Risk of Myocardial Infarction and Stroke: A Nested Case-Control Study in Sweden. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37007. [PMID: 35285690 PMCID: PMC8919955 DOI: 10.1289/ehp9791] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are widespread and persistent pollutants that have been associated with elevated cholesterol levels. However, data on incident cardiovascular disease (CVD) is lacking. OBJECTIVES We investigated the association of exposure to PFAS with risk of myocardial infarction and stroke and, subsidiary, with baseline blood lipids. METHODS This population-based nested case-control study included first incident myocardial infarction and stroke cases with matched controls from two Swedish cohorts: the Swedish Mammography Cohort-Clinical (SMC-C) and the Cohort of 60-year-olds (60YO). Baseline blood sampling occurred during 2003-2009 and 1997-1999 with follow-up through 2017 and 2014 for the SMC-C and the 60YO, respectively. Eight plasma PFAS concentrations were measured using targeted liquid chromatography-triple quadrupole mass spectrometry. Five of these were quantifiable in both cohorts; individual values and their standardized sum were categorized into tertiles based on the controls. First incident myocardial infarction (n=345) and ischemic stroke (n=354) cases were ascertained via linkage to the National Inpatient Register and the Cause of Death Register. Controls were randomly selected from each cohort after matching for age, sex, and sample date. Baseline blood lipids were measured in plasma or serum after overnight fasting. RESULTS Among the 1,528 case-control subjects, the mean (standard deviation) age was 66 (7.7) y and 67% of them were women. In multivariable-adjusted analyses, the third tertile of the standardized sum of five PFAS associated with higher cholesterol and lower triglyceride levels among controls at baseline (n=631). The corresponding results were odds ratios=0.70 [95% confidence interval (CI): 0.53, 0.93] for CVD, 0.60 (95% CI: 0.39, 0.92) for myocardial infarction, and 0.83 (95% CI: 0.46, 1.50) for stroke. DISCUSSION This study indicated that exposure to PFAS, although associated with increased cholesterol levels, did not associate with an increased risk of myocardial infarction, stroke, or their composite end point. The findings improve our knowledge on potential health effects of environmental contaminants in the CVD context. https://doi.org/10.1289/EHP9791.
Collapse
Affiliation(s)
- Tessa Schillemans
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Carolina Donat-Vargas
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
- Department of Preventive Medicine and Public Health, School of Medicine, Campus of International Excellence, Universidad Autónoma de Madrid y Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Ulf de Faire
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Karin Leander
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
| |
Collapse
|
30
|
Corbett GA, Lee S, Woodruff TJ, Hanson M, Hod M, Charlesworth AM, Giudice L, Conry J, McAuliffe FM. Nutritional interventions to ameliorate the effect of endocrine disruptors on human reproductive health: A semi-structured review from FIGO. Int J Gynaecol Obstet 2022; 157:489-501. [PMID: 35122246 PMCID: PMC9305939 DOI: 10.1002/ijgo.14126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Background Endocrine disrupting chemicals have harmful effects on reproductive, perinatal, and obstetric outcomes. Objective To analyze the evidence on nutritional interventions to reduce the negative effects of endocrine disruptors on reproductive, perinatal, and obstetric outcomes. Search strategy A search of MEDLINE (PubMed), Allied Health Literature (CINAHL), EMBASE, Web of Science, and the Cochrane Database was conducted from inception to May 2021. Selection criteria Experimental studies on human populations. Data collection and analysis Data were collected from eligible studies. Risk of bias assessment was completed using the Cochrane risk of bias tool and the ROBINS‐I Tool. Results Database searches yielded 15 362 articles. Removing 11 181 duplicates, 4181 articles underwent abstract screening, 26 articles were eligible for full manuscript review, and 16 met full inclusion criteria. Several interventions were found to be effective in reducing exposure to endocrine disruptors: avoidance of plastic containers, bottles, and packaging; avoidance of canned food/beverages; consumption of fresh and organic food; avoidance of fast/processed foods; and supplementation with vitamin C, iodine, and folic acid. There were some interventional studies examining therapies to improve clinical outcomes related to endocrine disruptors. Conclusion Dietary alterations can reduce exposure to endocrine disruptors, with limited data on interventions to improve endocrine‐disruptor–related clinical outcomes. This review provides useful instruction to women, their families, healthcare providers, and regulatory bodies. Nutritional interventions shown to reduce exposure to endocrine disruptors include avoidance of canned/processed or plastic‐packaged foods. Consumption of fresh/organic foods and vitamin C, iodine, and folic acid also reduce exposure.
Collapse
Affiliation(s)
- Gillian A Corbett
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Sadhbh Lee
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Tracey J Woodruff
- Program on Reproductive Health and Environment, Department of Obstetrics and Gynecology, Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA
| | - Mark Hanson
- International Federation of Gynaecology and Obstetrics (FIGO) Committee on Impact of Pregnancy on Long-term Health.,Institute of Developmental Sciences and NIHR Biomedical Research Centre, University of Southampton and NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Moshe Hod
- International Federation of Gynaecology and Obstetrics (FIGO) Committee on Impact of Pregnancy on Long-term Health.,Mor Comprehensive Women's Health Care Centre, Tel Aviv, Israel
| | - Anne Marie Charlesworth
- Program on Reproductive Health and Environment, Department of Obstetrics and Gynecology, Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA
| | - Linda Giudice
- International Federation of Gynecology and Obstetrics (FIGO) Committee on Climate Change and Toxic Environmental Exposures.,Centre for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Jeanne Conry
- Environmental Health and Leadership Foundation, United States
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland.,International Federation of Gynaecology and Obstetrics (FIGO) Committee on Impact of Pregnancy on Long-term Health
| | | |
Collapse
|
31
|
Vo HNP, Nguyen TMH, Ngo HH, Guo W, Shukla P. Biochar sorption of perfluoroalkyl substances (PFASs) in aqueous film-forming foams-impacted groundwater: Effects of PFASs properties and groundwater chemistry. CHEMOSPHERE 2022; 286:131622. [PMID: 34303903 DOI: 10.1016/j.chemosphere.2021.131622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of per- and polyfluoroalkyl substances (PFASs)-related products such as aqueous film-forming foams (AFFF) has led to increasing contamination of groundwater systems. The concentration of PFASs in AFFF-impacted groundwater can be several orders of magnitude higher than the drinking water standard. There is a need for a sustainable and effective sorbent to remove PFASs from groundwater. This work aims to investigate the sorption of PFASs in groundwater by biochar column. The specific objectives are to understand the influences of PFASs properties and groundwater chemistry to PFASs sorption by biochar. The PFASs-spiked Milli-Q water (including 19 PFASs) and four aqueous film-forming foams (AFFF)-impacted groundwater were used. The partitioning coefficients (log Kd) of long chain PFASs ranged from 0.77 to 4.63 while for short chain PFASs they remained below 0.68. For long chain PFASs (C ≥ 7), log Kd increased by 0.5 and 0.8 for each CF2 moiety of PFCAs and PFSAs, respectively. Dissolved organic matter (DOM) was the most influential factor in PFASs sorption over pH, salinity, and specific ultraviolet absorbance (SUVA). DOM contained hydrophobic compounds and metal ions which can form DOM-PFASs complexes to provide more sorption sites for PFASs. The finding is useful for executing PFASs remediation by biochar filtration column, especially legacy long chain PFASs, for groundwater remediation.
Collapse
Affiliation(s)
- Hoang Nhat Phong Vo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia
| | - Thi Minh Hong Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Pradeep Shukla
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
32
|
Heo DG, Lee DC, Kwon YM, Seol MJ, Sung Moon J, Min Chung S, Kim JH. Simultaneous Determination of Perfluorooctanoic Acid and Perfluorooctanesulfonic Acid in Korean Sera Using LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1192:123138. [DOI: 10.1016/j.jchromb.2022.123138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
|
33
|
You L, Zheng F, Su C, Wang L, Li X, Chen Q, Kou J, Wang X, Wang Y, Wang Y, Mei S, Zhang B, Liu X, Xu G. Metabolome-wide association study of serum exogenous chemical residues in a cohort with 5 major chronic diseases. ENVIRONMENT INTERNATIONAL 2022; 158:106919. [PMID: 34634623 DOI: 10.1016/j.envint.2021.106919] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Chronic diseases have become main killers affecting the health of human, and environmental pollution is a major health risk factor that cannot be ignored. It has been reported that exogenous chemical residues including pesticides, herbicides, fungicides, veterinary drugs and persistent organic pollutants are associated with chronic diseases. However, the evidence for their relationship is equivocal and the underlying mechanisms are unclear. OBJECTIVES We aim to investigate the linkages between serum exogenous chemical residues and 5 main chronic diseases including obesity, hyperuricemia, hypertension, diabetes and dyslipidemia, and further reveal the metabolic perturbations of chronic diseases related to exogenous chemical residue exposure, then gain potential mechanism insight at the metabolic level. METHODS LC-MS-based targeted and nontargeted methods were respectively performed to quantify exogenous chemical residues and acquire metabolic profiling of 496 serum samples from chronic disease patients. Non-parametric test, correlation and regression analyses were carried out to investigate the association between exogenous chemical residues and chronic diseases. Metabolome-wide association study combined with the meeting-in-the-middle strategy and mediation analysis was performed to reveal and explain exposure-related metabolic disturbances and their risk to chronic diseases. RESULTS In the association analysis of 106 serum exogenous chemical residues and 5 chronic diseases, positive associations of serum perfluoroalkyl substances (PFASs) with hyperuricemia were discovered while other associations were not significant. 240 exposure markers of PFASs and 84 disease markers of hyperuricemia were found, and 47 of them were overlapped and considered as putative effective markers. Serum uric acid, amino acids, cholesterol, carnitines, fatty acids, glycerides, glycerophospholipids, ceramides, and a part of sphingolipids were positively correlated with PFASs and associated with increased risk for hyperuricemia. Creatine, creatinine, glyceryl monooleate, phosphatidylcholine 36:6, phosphatidylethanolamine 40:6, cholesterol and sphingolipid 36:1;2O were significant markers which mediated the associations of the residues with hyperuricemia. CONCLUSIONS Our study demonstrated a significantly positive association between PFASs exposure and hyperuricemia. The most significant metabolic abnormality was lipid metabolism which not only was positively associated with PFASs, but also increased the risk of hyperuricemia.
Collapse
Affiliation(s)
- Lei You
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Su
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Qianqian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Kou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanfeng Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Bing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Zhang YT, Zeeshan M, Su F, Qian ZM, Dee Geiger S, Edward McMillin S, Wang ZB, Dong PX, Ou YQ, Xiong SM, Shen XB, Zhou PE, Yang BY, Chu C, Li QQ, Zeng XW, Feng WR, Zhou YZ, Dong GH. Associations between both legacy and alternative per- and polyfluoroalkyl substances and glucose-homeostasis: The Isomers of C8 health project in China. ENVIRONMENT INTERNATIONAL 2022; 158:106913. [PMID: 34624590 DOI: 10.1016/j.envint.2021.106913] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiological studies on the associations of legacy per- and polyfluoroalkyl substances (PFASs) and glucose homeostasis remain discordant. Understanding of PFAS alternatives is limited, and few studies have reported joint associations of PFASs and PFAS alternatives. OBJECTIVES To investigate associations of novel PFAS alternatives (chlorinated perfluoroalkyl ether sulfonic acids, Cl-PFESAs and perfluorobutanoic acid, PFBA) and two legacy PFASs (Perfluorooctanoic acid, PFOA and perfluorooctane sulfonate, PFOS) with glucose-homeostasis markers and explore joint associations of 13 legacy and alternative PFASs with the selected outcomes. METHODS We used cross-sectional data of 1,038 adults from the Isomers of C8 Health Project in China. Associations of PFASs and PFAS alternatives with glucose-homeostasis were explored in single-pollutant models using generalized linear models with natural cubic splines for PFASs. Bayesian Kernel Machine Regression (BKMR) models were applied to assess joint associations of exposures and outcomes. Sex-specific analyses were also conducted to evaluate effect modification. RESULTS After adjusting for confounders, both legacy (PFOA, PFOS) and alternative (Cl-PFESAs and PFBA) PFASs were positively associated with glucose-homeostasis markers in single-pollutant models. For example, in the total study population, estimated changes with 95% confidence intervals (CI) of fasting glucose at the 95th percentile of 6:2Cl-PFESA and PFOS against the thresholds were 0.90 (95% CI: 0.59, 1.21) and 0.44 (95% CI: 0.26, 0.62). Positive joint associations were found in BKMR models with 6:2Cl-PFESA contributing most. Sex-specific associations existed in both single- and multi-pollutant models. CONCLUSIONS Legacy and alternative PFASs were positively associated with glucose-homeostasis markers. 6:2Cl-PFESA was the primary contributor. Sex-specific associations were also identified. These results indicate that joint associations and effect modification should be considered in risk assessment. However, further studies are recommended to strengthen our findings and to elucidate the mechanisms of action of legacy and alternative PFASs.
Collapse
Affiliation(s)
- Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Su
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zheng-Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Sarah Dee Geiger
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63103, USA
| | - Zhi-Bin Wang
- Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peng-Xin Dong
- Nursing College, Guangxi Medical University, Nanning 530021, China
| | - Yan-Qiu Ou
- Department of Epidemiology, Guangdong Cardiovascular Institute, WHO Collaborating Center for Research and Training in Cardiovascular Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shi-Min Xiong
- School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Xu-Bo Shen
- School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Pei-En Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Ru Feng
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Yuan-Zhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi 563060, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
35
|
Moon J. Perfluoroalkyl substances (PFASs) exposure and kidney damage: Causal interpretation using the US 2003-2018 National Health and Nutrition Examination Survey (NHANES) datasets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117707. [PMID: 34252714 DOI: 10.1016/j.envpol.2021.117707] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION The objective of this study was to validate the hypothesis that increased serum concentrations of perfluoroalkyl substances (PFASs) cause kidney damage. A causal interpretative study was designed using the US 2003-2018 National Health and Nutrition Examination Survey (NHANES) datasets. METHODS Three statistical models, including multivariable linear regression, generalized additive model, and regression discontinuity model (RDM), were applied to the US 2003-2018 NHANES datasets to evaluate the causal relationship between the four PFAS agents and estimated glomerular filtration rate (eGFR). Directed acyclic graphs were plotted for a more valid causal inference. RESULTS AND DISCUSSION In the RDM, when the natural logarithm of each PFAS agent increases by 1 ng/mL after each cut-off value, eGFR decreased 4.63 mL/min/1.73 m2 for perfluorooctanoic acid, 3.42 mL/min/1.73 m2 for perfluorooctane sulfonic acid, 2.37 mL/min/1.73 m2 for perfluorohexane sulfonic acid, and 2.87 mL/min/1.73 m2 for perfluorononanoic acid. The possibility of reverse causation that increased serum PFAS concentration is the consequence of reduced eGFR, not the cause, was low, and an additional adjustment of potential confounders was not needed. CONCLUSION This study contributes to the understanding of PFAS-induced kidney damage. Further longitudinal epidemiological and toxicological studies are recommended.
Collapse
Affiliation(s)
- Jinyoung Moon
- Department of Environmental Health Science, Graduate School of Public Health, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea; Department of Occupational and Environmental Medicine, Seoul Saint Mary's Hospital, Banpo-daero 222, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
36
|
Han X, Meng L, Zhang G, Li Y, Shi Y, Zhang Q, Jiang G. Exposure to novel and legacy per- and polyfluoroalkyl substances (PFASs) and associations with type 2 diabetes: A case-control study in East China. ENVIRONMENT INTERNATIONAL 2021; 156:106637. [PMID: 33993001 DOI: 10.1016/j.envint.2021.106637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Associations between per- and polyfluoroalkyl substances (PFASs) and the incidence of type 2 diabetes are controversial in epidemiological studies. In addition, limited data are available for assessing the health effects of novel PFAS alternatives. Our study evaluated the effects of PFAS exposure on type 2 diabetes by estimating the associations of PFASs in human serum with the risk of type 2 diabetes and levels of glycemic biomarkers and lipid fractions. The case-control study consisted of 304 participants from Shandong Province, East China, half of which were diagnosed with type 2 diabetes. Logistic regression showed that most PFASs were inversely associated with the risk of type 2 diabetes after adjusting for age, sex, and body mass index. However, concentrations of perfluorooctanoic acid (PFOA) in the control group were positively associated with fasting plasma glucose levels (β = 0.04, 95% confidence interval (CI): 0.0003, 0.08), which may promote the development of type 2 diabetes. Furthermore, each log-unit increase in the concentrations of perfluorononanoic acid (PFNA), perfluoroundecanoic acid (PFUnDA), and 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (Cl-PFESA) were associated with a total cholesterol increase (i.e., 17.49% (95% CI: 0.93%, 34.90%), 17.49% (95% CI: 4.71%, 31.83%), and 17.49% (95% CI: 4.71%, 31.83%), respectively). Positive associations were also observed between PFNA, PFUnDA, perfluorooctane sulfonate (PFOS), and 6:2 Cl-PFESA and low-density lipoprotein cholesterol. However, no associations between PFASs and hemoglobin A1c, triglycerides, or high-density lipoprotein cholesterol reached statistical significance, nor associations between PFAS mixtures and outcomes of interest. In conclusion, the significant correlations between serum PFASs and glycemic biomarkers and lipid fractions indicated that PFAS exposure may be a potential diabetogenic factor. To the best of our knowledge, this is the first study to assess the associations between novel Cl-PFESAs and type 2 diabetes, although the inverse associations observed require clarification in future studies.
Collapse
Affiliation(s)
- Xu Han
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingling Meng
- Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong 250014, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lan Zhou, Gansu 730070, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
37
|
Yu G, Jin M, Huang Y, Aimuzi R, Zheng T, Nian M, Tian Y, Wang W, Luo Z, Shen L, Wang X, Du Q, Xu W, Zhang J. Environmental exposure to perfluoroalkyl substances in early pregnancy, maternal glucose homeostasis and the risk of gestational diabetes: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2021; 156:106621. [PMID: 33984575 DOI: 10.1016/j.envint.2021.106621] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Humans are widely exposed to environmental perfluoroalkyl substances (PFAS), which may affect glucose homeostasis. However, research linking PFAS exposure to glucose homeostasis during pregnancy is limited and the results were inconsistent. We aimed to investigate the association between PFAS exposure and glucose homeostasis in pregnancy in a large prospective cohort. METHODS A total of 2747 pregnant women who participated in the Shanghai Birth Cohort, had blood samples in early pregnancy and completed a 75 g oral glucose tolerance test (OGTT) at 24-28 gestational weeks were included. 10 PFAS were determined by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS) in the plasma samples in early pregnancy. Logistic regression was used to explore the associations between PFAS concentrations and gestational diabetes mellitus (GDM), while multiple linear regression was used to model the associations between PFAS and OGTT fasting, 1-h and 2-h glucose levels. Potential confounders were adjusted. Bayesian kernel machine regression (BKMR) and a quantile-based g-computation approach (qgcomp) were employed to explore the joint and independent effects of PFAS on glucose homeostasis. RESULTS The incidence of GDM was 11.8%. One log-unit increment in plasma concentrations in early pregnancy was associated with an increased risk of GDM for perfluorobutane sulfonate (PFBS) (adjusted odd ratio (aOR) = 1.23, 95% confidence interval (95% CI): 1.05, 1.44) and perfluoroheptanoic acid (PFHpA) (aOR = 1.25, 95% CI: 1.07, 1.46). Perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexanesulfonate (PFHxS) and PFHpA were positively correlated with 1-h and 2-h glucose levels. Results of the mixed exposure model showed that the joint effects of PFAS were significantly associated with abnormal glucose homeostasis; In the BKMR model, PFAS mixture exposure was positively associated with the GDM incidence, 1-h and 2-h glucose levels and negatively correlated with FBG level. A similar trend could be observed in qgcomp and the positive correlation between PFAS and 2-h glucose level was significant (β = 0.12, 95% CI: 0.04, 0.20). PFOS, PFNA and PFHpA may be the main contributors after controlling for other PFAS congeners. PFOS was significantly correlated with GDM incidence and 2-h glucose level, and PFHpA was significantly associated with FBG and 2-h glucose levels. The above associations were more prominent among women with a normal prepregnant BMI. CONCLUSIONS Environmental exposure to PFAS may affect glucose homeostasis in pregnancy and increase the risk of GDM, especially in normal weight women.
Collapse
Affiliation(s)
- Guoqi Yu
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minfei Jin
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Huang
- Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, China
| | - Ruxianguli Aimuzi
- Shanghai Jiao Tong University School of Public Health, Shanghai, China
| | - Tao Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Nian
- Shanghai Jiao Tong University School of Public Health, Shanghai, China
| | - Ying Tian
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Jiao Tong University School of Public Health, Shanghai, China
| | - Weiye Wang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongcheng Luo
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Obstetrics and Gynecology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Lisong Shen
- Department of Laboratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Du
- Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, China; Department of Rehabilitation Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiping Xu
- Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, China; Department of Cardiovascular, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Jiao Tong University School of Public Health, Shanghai, China.
| |
Collapse
|
38
|
Margolis R, Sant KE. Associations between Exposures to Perfluoroalkyl Substances and Diabetes, Hyperglycemia, or Insulin Resistance: A Scoping Review. J Xenobiot 2021; 11:115-129. [PMID: 34564296 PMCID: PMC8482218 DOI: 10.3390/jox11030008] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent environmental pollutants that are commonly found in the human body due to exposures via drinking water, surfactants used in consumer materials, and aqueous film-forming foams (AFFFs). PFAS exposure has been linked to adverse health effects such as low infant birth weights, cancer, and endocrine disruption, though increasingly studies have demonstrated that they may perturb metabolic processes and contribute to dysfunction. This scoping review summarizes the chemistry of PFAS exposure and the epidemiologic evidence for associations between exposure to per- and polyfluoroalkyl substances and the development of diabetes, hyperglycemia, and/or insulin resistance. We identified 11 studies on gestational diabetes mellitus, 3 studies on type 1 diabetes, 7 studies on type 2 diabetes, 6 studies on prediabetes or unspecified diabetes, and 15 studies on insulin resistance or glucose tolerance using the SCOPUS and PubMed databases. Approximately 24 reported positive associations, 9 negative associations, 2 non-linear associations, and 2 inverse associations, and 8 reported no associations found between PFAS and all diabetes search terms. Cumulatively, these data indicate the need for further studies to better assess these associations between PFAS exposure and diabetes.
Collapse
Affiliation(s)
| | - Karilyn E. Sant
- School of Public Health, San Diego State University, San Diego, CA 92182, USA;
| |
Collapse
|
39
|
Goodrich JA, Alderete TL, Baumert BO, Berhane K, Chen Z, Gilliland FD, Goran MI, Hu X, Jones DP, Margetaki K, Rock S, Stratakis N, Valvi D, Walker DI, Conti DV, Chatzi L. Exposure to Perfluoroalkyl Substances and Glucose Homeostasis in Youth. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97002. [PMID: 34468161 PMCID: PMC8409228 DOI: 10.1289/ehp9200] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Exposure to per- and polyfluoroalkyl substances (PFAS), a prevalent class of persistent pollutants, may increase the risk of type 2 diabetes. OBJECTIVE We examined associations between PFAS exposure and glucose metabolism in youth. METHODS Overweight/obese adolescents from the Study of Latino Adolescents at Risk of Type 2 Diabetes (SOLAR; n=310) participated in annual visits for an average of 3.3±2.9y. Generalizability of findings were tested in young adults from the Southern California Children's Health Study (CHS; n=135) who participated in a clinical visit with a similar protocol. At each visit, oral glucose tolerance tests were performed to estimate glucose metabolism and β-cell function via the insulinogenic index. Four PFAS were measured at baseline using liquid chromatography-high-resolution mass spectrometry; high levels were defined as concentrations >66th percentile. RESULTS In females from the SOLAR, high perfluorohexane sulfonate (PFHxS) levels (≥2.0 ng/mL) were associated with the development of dysregulated glucose metabolism beginning in late puberty. The magnitude of these associations increased postpuberty and persisted through 18 years of age. For example, postpuberty, females with high PFHxS levels had 25-mg/dL higher 60-min glucose (95% CI: 12, 39mg/dL; p<0.0001), 15-mg/dL higher 2-h glucose (95% CI: 1, 28mg/dL; p=0.04), and 25% lower β-cell function (p=0.02) compared with females with low levels. Results were largely consistent in the CHS, where females with elevated PFHxS levels had 26-mg/dL higher 60-min glucose (95% CI: 6.0, 46mg/dL; p=0.01) and 19-mg/dL higher 2-h glucose, which did not meet statistical significance (95% CI: -1, 39mg/dL; p=0.08). In males, no consistent associations between PFHxS and glucose metabolism were observed. No consistent associations were observed for other PFAS and glucose metabolism. DISCUSSION Youth exposure to PFHxS was associated with dysregulated glucose metabolism in females, which may be due to changes in β-cell function. These associations appeared during puberty and were most pronounced postpuberty. https://doi.org/10.1289/EHP9200.
Collapse
Affiliation(s)
- Jesse A. Goodrich
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Brittney O. Baumert
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Kiros Berhane
- Department of Biostatistics, Columbia University, New York, New York, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Frank D. Gilliland
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael I. Goran
- Department of Pediatrics, Keck School of Medicine, Los Angeles, California, USA
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Xin Hu
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dean P. Jones
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Katerina Margetaki
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Sarah Rock
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Nikos Stratakis
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David V. Conti
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
40
|
Zeeshan M, Zhang YT, Yu S, Huang WZ, Zhou Y, Vinothkumar R, Chu C, Li QQ, Wu QZ, Ye WL, Zhou P, Dong P, Zeng XW, Hu LW, Yang BY, Shen X, Zhou Y, Dong GH. Exposure to isomers of per- and polyfluoroalkyl substances increases the risk of diabetes and impairs glucose-homeostasis in Chinese adults: Isomers of C8 health project. CHEMOSPHERE 2021; 278:130486. [PMID: 34126693 DOI: 10.1016/j.chemosphere.2021.130486] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) exposure has been linked to diabetes, but evidence on the association of isomers of PFAS with type 2 diabetes (T2D) remains scant. This population based cross-sectional study aimed to investigate associations between serum PFAS isomers, glucose-homeostasis markers and T2D, adjusted for multiple potential confounders. We used data from "Isomers of C8 Health Project in China" from July 2015 to October 2016. A total of 10 PFAS including isomers of PFOS and PFOA were measured in serum of 1045 Chinese adults. Fasting blood glucose, fasting insulin, homeostasis model of insulin (HOMA-IR) and beta cell function (HOMA-β) were considered as markers of glucose-homeostasis. We found significant positive associations between serum PFAS isomers and glucose-homeostasis markers, namely, fasting blood glucose, fasting insulin and HOMA-IR. Per log-unit increase in branched (br)-PFOS concentration was associated with increased fasting blood glucose (β = 0.25, 95% CI: 0.18, 0.33), fasting insulin (β = 2.19, 95% CI: 1.44, 2.93) and HOMA-IR (β = 0.69, 95% CI: 0.50, 0.89). As compared to br-PFOS, linear (n)-PFOS and -PFOA showed lesser significant associations with glucose-homeostasis makers. Further, exposure to all PFAS including isomeric PFOS, PFOA and PFHxS increased the risk of T2D with br-PFOS exhibiting the highest risk (OR = 5.41, 95% CI: 3.68-7.96). The associations were stronger among women than men. In conclusion, chronic exposure to PFAS isomers was associated with impaired glucose-homeostasis and may increase the prevalence of T2D in Chinese adults. Given the ubiquity of PFAS in the environment and the public health burden of T2D, future studies are warranted to corroborate the findings.
Collapse
Affiliation(s)
- Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shu Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Zhong Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Rajamanickam Vinothkumar
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wan-Lin Ye
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peien Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Pengxin Dong
- Nursing College, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563060, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563060, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
41
|
Yu S, Feng WR, Liang ZM, Zeng XY, Bloom MS, Hu GC, Zhou Y, Ou YQ, Chu C, Li QQ, Yu Y, Zeng XW, Dong GH. Perfluorooctane sulfonate alternatives and metabolic syndrome in adults: New evidence from the Isomers of C8 Health Project in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117078. [PMID: 33839621 DOI: 10.1016/j.envpol.2021.117078] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), are ubiquitous alternatives to perfluorooctane sulfonate (PFOS), a widely used poly- and perfluoroalkyl substance (PFAS). Despite in vivo and in vitro evidence of metabolic toxicity, no study has explored associations of Cl-PFESAs concentrations with metabolic syndrome (MetS) in a human population. To help address this data gap, we quantified 32 PFAS, including 2 PFOS alternative Cl-PFESAs (6:2 and 8:2 Cl-PFESAs) in serum from 1228 adults participating in the cross-sectional Isomers of C8 Health Project in China study. The odds ratios (ORs) and 95% confidence intervals (CIs) of MetS and its various components were estimated using individual PFAS as a continuous or categorical predictor in multivariate regression models. The association between the overall mixture of PFAS and MetS was examined using probit Bayesian Kernel Machine Regression (BKMR-P). Greater serum PFAS concentrations were associated with higher odds of MetS and demonstrated a statistically significant dose-response trend (P for trend < 0.001). For example, each ln-unit (ng/mL) increase in serum 6:2 Cl-PFESA was associated with a higher prevalence of MetS (OR = 1.52, 95% CI: 1.25, 1.85). MetS was also 2.26 (95% CI: 1.59, 3.23) times more common in the highest quartile of serum 6:2 Cl-PFESA concentration than the lowest, and particularly high among women (OR = 6.41, 95% CI: 3.65, 11.24). The BKMR-P analysis showed a positive association between the overall mixture of measured PFAS and the odds of MetS, but was only limited to women. While our results suggest that exposure to Cl-PFESAs was associated with MetS, additional longitudinal studies are needed to more definitively address the potential health concerns of these PFOS alternatives.
Collapse
Affiliation(s)
- Shu Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Ru Feng
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Zi-Mian Liang
- Department of Prevention and Control of Infectious Diseases, Foshan Center for Disease Control and Prevention, Foshan, 528000, China
| | - Xiao-Yun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Michael S Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA, 22030, USA
| | - Guo-Cheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Yan-Qiu Ou
- Department of Epidemiology, Guangdong Cardiovascular Institute, WHO Collaborating Center for Research and Training in Cardiovascular Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
42
|
Wang Y, Aimuzi R, Nian M, Zhang Y, Luo K, Zhang J. Perfluoroalkyl substances and sex hormones in postmenopausal women: NHANES 2013-2016. ENVIRONMENT INTERNATIONAL 2021; 149:106408. [PMID: 33548847 DOI: 10.1016/j.envint.2021.106408] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Although an alteration in sex hormones has been linked to perfluoroalkyl substances (PFAS) in premenopausal women and girls, whether such associations exist in postmenopausal women remains uncertain. OBJECTS To examine the associations between serum PFAS concentrations and sex hormone levels in postmenopausal women. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) 2013-2016 waves were used. A total of 706 postmenopausal women with information on serum PFAS [perfluorohexane sulfonic acid (PFHxS), pefluorodecanoic acid (PFDA); perfluorononanoic acid (PFNA); linear perfluorooctanoate (n-PFOA); linear perfluorooctane sulfonate (n-PFOS); monomethyl branched isomers of PFOS (Sm-PFOS)], sex hormones indicators [e.g., total testosterone (TT), estradiol (E2) and sex hormone binding globulin (SHBG)] as well as selected covariates were included. An indicator of circulating free testosterone (FT), and ratio of TT to E2 (TT/E2) were generated. Multiple linear regression accounting for the primary sampling unit, strata, and environmental sampling weights of PFAS was used for association analyses. Effect modification by obesity and type of menopause was explored via stratified analyses as well as the testing of interaction terms. Principal component analysis (PCA) and Bayesian kernel machine regression (BKMR) were conducted to assess these relationships in a multiple PFAS exposure setting. RESULTS After adjusting for potential confounders, total perfluorooctanoate (TPFOA: n-PFOA + Sb-PFOA) and total perfluorooctane sulfonate (TPFOS: n-PFOS + Sm-PFOS), and their linear and branched isomers were positively associated with two androgen indicators (i.e., TT and FT). PCA results revealed that the principal component (PC) composed of n-PFOA was positively associated with ln (TT) [β = 0.09, 95% confidential interval (CI): 0.02, 0.16; per ln-ng/mL increase in exposure], and ln (FT) (β = 0.12, 95% CI: 0.05, 0.2) in overweight/obese [body mass index (BMI) ≥ 25 kg/m2] women, but not in those with BMI < 25 kg/m2. Additionally, among overweight/obese women, PFHxS was positively associated with androgens and negatively with ln (SHBG) (β = -0.06, 95% CI: -0.12, -0.01). The PC composed of Sm-PFOS, n-PFOS, and PFHxS was positively associated with ln (TT) levels among overweight/obese women. Results from BKMR also confirmed the findings on n-PFOA and PFHxS. CONCLUSIONS Our study indicates that n-PFOA and PFHxS were positively associated with levels of several androgen indicators in postmenopausal women, particularly among overweight/obese ones. Given the higher risk of cardiometabolic diseases associated with elevated levels of androgens in postmenopausal women, future studies are needed to explore the potential underlying mechanisms.
Collapse
Affiliation(s)
- Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ruxianguli Aimuzi
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Min Nian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
43
|
Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, Smith JS, Roberts SM. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:606-630. [PMID: 33017053 PMCID: PMC7906952 DOI: 10.1002/etc.4890] [Citation(s) in RCA: 716] [Impact Index Per Article: 238.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 01/09/2023]
Abstract
Reports of environmental and human health impacts of per- and polyfluoroalkyl substances (PFAS) have greatly increased in the peer-reviewed literature. The goals of the present review are to assess the state of the science regarding toxicological effects of PFAS and to develop strategies for advancing knowledge on the health effects of this large family of chemicals. Currently, much of the toxicity data available for PFAS are for a handful of chemicals, primarily legacy PFAS such as perfluorooctanoic acid and perfluorooctane sulfonate. Epidemiological studies have revealed associations between exposure to specific PFAS and a variety of health effects, including altered immune and thyroid function, liver disease, lipid and insulin dysregulation, kidney disease, adverse reproductive and developmental outcomes, and cancer. Concordance with experimental animal data exists for many of these effects. However, information on modes of action and adverse outcome pathways must be expanded, and profound differences in PFAS toxicokinetic properties must be considered in understanding differences in responses between the sexes and among species and life stages. With many health effects noted for a relatively few example compounds and hundreds of other PFAS in commerce lacking toxicity data, more contemporary and high-throughput approaches such as read-across, molecular dynamics, and protein modeling are proposed to accelerate the development of toxicity information on emerging and legacy PFAS, individually and as mixtures. In addition, an appropriate degree of precaution, given what is already known from the PFAS examples noted, may be needed to protect human health. Environ Toxicol Chem 2021;40:606-630. © 2020 SETAC.
Collapse
Affiliation(s)
- Suzanne E. Fenton
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Alan Ducatman
- West Virginia University School of Public Health, Morgantown, West Virginia, USA
| | - Alan Boobis
- Imperial College London, London, United Kingdom
| | - Jamie C. DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Christopher Lau
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carla Ng
- Departments of Civil and Environmental Engineering and Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James S. Smith
- Navy and Marine Corps Public Health Center, Portsmouth, Virginia, USA
| | - Stephen M. Roberts
- Center for Environmental & Human Toxicology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
44
|
Mitro SD, Liu J, Jaacks LM, Fleisch AF, Williams PL, Knowler WC, Laferrère B, Perng W, Bray GA, Wallia A, Hivert MF, Oken E, James-Todd TM, Temprosa M. Per- and polyfluoroalkyl substance plasma concentrations and metabolomic markers of type 2 diabetes in the Diabetes Prevention Program trial. Int J Hyg Environ Health 2021; 232:113680. [PMID: 33348273 PMCID: PMC8630734 DOI: 10.1016/j.ijheh.2020.113680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are widely used chemicals, some of which have been linked to type 2 diabetes. We tested whether PFAS concentrations were cross-sectionally associated with metabolites previously shown to predict incident type 2 diabetes using the Diabetes Prevention Program (DPP), a trial of individuals at high risk of type 2 diabetes. METHODS We evaluated 691 participants enrolled in the DPP with baseline measures of 10 PFAS (including total perfluorooctanesulfonic acid (PFOS), total perfluorooctanoic acid (PFOA), and Sb-PFOA [branched isomers of PFOA]) and 77 metabolites. We used log2-transformed PFAS concentrations as exposures and standardized metabolite concentrations as outcomes in linear regression models adjusted for age, sex, race/ethnicity, use of anti-hyperlipidemic or triglyceride-lowering medication, income, years of education, marital status, smoking, and family history of diabetes, with Benjamini-Hochberg linear step-up false discovery rate correction. RESULTS Sb-PFOA was associated with the largest number of tested metabolites (29 of 77). Each doubling in Sb-PFOA was associated with higher leucine (β = 0.07 [95%CI: 0.02, 0.11] SD) and lower glycine (-0.08 [95%CI: 0.03, -0.13] SD). Each doubling of either total PFOA or n-PFOA was associated with -0.13 [95%CI: 0.04, -0.22] SD lower glycine. PFOA and Sb-PFOA were positively associated with multiple triacylglycerols and diacylglycerols, and total PFOS, total PFOA, and Sb-PFOA were positively associated with phosphatidylethanolamines. CONCLUSIONS PFAS concentrations are associated with metabolites linked to type 2 diabetes (particularly amino acid, glycerolipid and glycerophospholipid pathways). Further prospective research is needed to test whether these metabolites mediate associations of PFAS and type 2 diabetes.
Collapse
Affiliation(s)
- Susanna D. Mitro
- Population Health Sciences Program, Harvard University, Boston, MA
| | - Jinxi Liu
- Department of Epidemiology and Biostatistics, Biostatistics Center and Milken Institute School of Public Health, George Washington University, Rockville, MD
| | - Lindsay M. Jaacks
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Abby F. Fleisch
- Pediatric Endocrinology and Diabetes, Maine Medical Center; and Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME
| | - Paige L. Williams
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA
| | - William C. Knowler
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
| | - Blandine Laferrère
- New York Obesity Research Center, Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Wei Perng
- Department of Epidemiology, Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - George A. Bray
- Pennington Biomedical Research Center/Louisiana State University, Baton Rouge, LA
| | - Amisha Wallia
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
| | - Tamarra M. James-Todd
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard T.H. Chan School of Public Health; and Division of Women’s Health, Department of Medicine, Connors Center for Women’s Health and Gender Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Marinella Temprosa
- Department of Epidemiology and Biostatistics, Biostatistics Center and Milken Institute School of Public Health, George Washington University, Rockville, MD
| |
Collapse
|
45
|
Schillemans T, Shi L, Donat-Vargas C, Hanhineva K, Tornevi A, Johansson I, Koponen J, Kiviranta H, Rolandsson O, Bergdahl IA, Landberg R, Åkesson A, Brunius C. Plasma metabolites associated with exposure to perfluoroalkyl substances and risk of type 2 diabetes - A nested case-control study. ENVIRONMENT INTERNATIONAL 2021; 146:106180. [PMID: 33113464 DOI: 10.1016/j.envint.2020.106180] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl substances (PFAS) are widespread persistent environmental pollutants. There is evidence that PFAS induce metabolic perturbations in humans, but underlying mechanisms are still unknown. In this exploratory study, we investigated PFAS-related plasma metabolites for their associations with type 2 diabetes (T2D) to gain potential mechanistic insight in these perturbations. We used untargeted LC-MS metabolomics to find metabolites related to PFAS exposures in a case-control study on T2D (n = 187 matched pairs) nested within the Västerbotten Intervention Programme cohort. Following principal component analysis (PCA), six PFAS measured in plasma appeared in two groups: 1) perfluorononanoic acid, perfluorodecanoic acid and perfluoroundecanoic acid and 2) perfluorohexane sulfonic acid, perfluorooctane sulfonic acid and perfluorooctanoic acid. Using a random forest algorithm, we discovered metabolite features associated with individual PFAS and PFAS exposure groups which were subsequently investigated for associations with risk of T2D. PFAS levels correlated with 171 metabolite features (0.16 ≤ |r| ≤ 0.37, false discovery rate (FDR) adjusted p < 0.05). Out of these, 35 associated with T2D (p < 0.05), with 7 remaining after multiple testing adjustment (FDR < 0.05). PCA of the 35 PFAS- and T2D-related metabolite features revealed two patterns, dominated by glycerophospholipids and diacylglycerols, with opposite T2D associations. The glycerophospholipids correlated positively with PFAS and associated inversely with risk for T2D (Odds Ratio (OR) per 1 standard deviation (1-SD) increase in metabolite PCA pattern score = 0.2; 95% Confidence Interval (CI) = 0.1-0.4). The diacylglycerols also correlated positively with PFAS, but they associated with increased risk for T2D (OR per 1-SD = 1.9; 95% CI = 1.3-2.7). These results suggest that PFAS associate with two groups of lipid species with opposite relations to T2D risk.
Collapse
Affiliation(s)
- Tessa Schillemans
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Lin Shi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Carolina Donat-Vargas
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, CEI UAM+CSIC, Madrid, Spain
| | - Kati Hanhineva
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Biochemistry, University of Turku, Turku, Finland
| | - Andreas Tornevi
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | | | - Jani Koponen
- Department for Health Security, Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Hannu Kiviranta
- Department for Health Security, Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Ingvar A Bergdahl
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Agneta Åkesson
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carl Brunius
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
46
|
Gardener H, Sun Q, Grandjean P. PFAS concentration during pregnancy in relation to cardiometabolic health and birth outcomes. ENVIRONMENTAL RESEARCH 2021; 192:110287. [PMID: 33038367 PMCID: PMC7736328 DOI: 10.1016/j.envres.2020.110287] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Poly- and perfluoroalkyl substances (PFAS) are persistent organic pollutants with pervasive exposure and suspected associations with metabolic abnormalities and adverse pregnancy outcomes. The goal of the present study was to examine the relationship between serum-PFAS concentrations measured in late pregnancy with relevant outcomes. METHODS The study sample included 433 pregnant women enrolled in the Vanguard Pilot Study of the National Children's Study. Six PFAS were measured in primarily third trimester serum, as well as fasting insulin, total cholesterol, and triglycerides. The PFAS were examined in quartiles in relation to serum biomarkers, gestational age at birth and birth weight standardized for gestational age using multivariable-adjusted regression models. RESULTS Over 98% of the study population had detectable concentrations of four of the PFAS, and concentrations varied by race/ethnicity. Total cholesterol was positively associated with PFDA, PFNA, and PFOS, and triglycerides with PFDA, PFNA, PFOS, and PFOA, but PFAS were not associated with fasting insulin in adjusted models. Only PFNA was associated with an increased odds of birth at <37 weeks gestation. PFAS were generally not associated with birth weight, though PFHxS was associated with the first quartile of birth weight among males only. CONCLUSIONS This study of pregnant U.S. women supports the ubiquitous exposure to PFAS and positive associations between PFAS exposure with serum-lipid concentrations. PFAS were largely unassociated with gestational age at birth and birth weight, though PFNA was associated with preterm birth. The results support the vulnerability to PFAS exposure of pregnancy.
Collapse
Affiliation(s)
- Hannah Gardener
- University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Qi Sun
- Harvard TH Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, USA
| | - Philippe Grandjean
- Harvard TH Chan School of Public Health, Boston, MA, USA; University of Southern Denmark, Odense, Denmark
| |
Collapse
|
47
|
Charles D, Berg V, Nøst TH, Huber S, Sandanger TM, Rylander C. Pre- and post-diagnostic blood profiles of perfluoroalkyl acids in type 2 diabetes mellitus cases and controls. ENVIRONMENT INTERNATIONAL 2020; 145:106095. [PMID: 32919259 DOI: 10.1016/j.envint.2020.106095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Studies exploring the associations between perfluoroalkyl acids (PFAAs) and type 2 diabetes mellitus (T2DM) are rather limited and have reported conflicting results. All studies to date, including prospective ones, have relied on a single blood sample to study this association. Similarly, studies investigating how T2DM status may influence the longitudinal changes in PFAA concentrations have not been previously performed. As PFAA concentrations in humans have changed considerably over the last two decades, and as individuals diagnosed with T2DM usually undergo lifestyle changes that could influence these concentrations, a single blood sample may not necessarily reflect the life-time exposure to PFAA concentrations. Hence, repeated measurements from the same individuals will extend our understanding of how PFAAs are associated with T2DM. The present study, therefore, aimed to explore associations between pre- and post-diagnostic PFAA blood profiles and T2DM and assess factors associated with longitudinal changes in PFAAs in T2DM cases and controls. METHODS Questionnaire data and blood samples from women participating in the Norwegian Women and Cancer study were used to conduct a nested case-control study among 46 T2DM cases matched to 85 non-diabetic controls. PFAAs were measured in blood samples collected prior to (2001/02) and after (2005/6) T2DM diagnosis. We investigated the association between PFAAs and incident and prevalent T2DM using conditional logistic regression. We assessed the longitudinal changes in PFAA concentrations within and between matched cases and controls using t-tests and linear regression models. RESULTS We observed no significant associations between pre-diagnostic PFAA concentrations and T2DM incidence. Similar results were observed for the post-diagnostic PFAA concentrations and T2DM prevalence. Decrease over time in PFAA concentrations were observed for PFOA and ∑PFOS concentrations, whereas increase over time were observed for PFNA, PFDA and PFUnDA concentrations. Longitudinal trends in PFAA concentrations among T2DM cases were similar to the changes observed in controls. CONCLUSIONS The study did not find evidence of association between PFAAs and incident or prevalent T2DM. The longitudinal changes in PFAAs concentrations were not influenced by T2DM status.
Collapse
Affiliation(s)
- Dolley Charles
- Department of Community Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Vivian Berg
- Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037 Tromsø, Norway; Department of Laboratory Medicine, Division of Diagnostic Services, University Hospital of North-Norway, NO-9038 Tromsø, Norway
| | - Therese H Nøst
- Department of Community Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Sandra Huber
- Department of Laboratory Medicine, Division of Diagnostic Services, University Hospital of North-Norway, NO-9038 Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Charlotta Rylander
- Department of Community Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, NO-9037 Tromsø, Norway
| |
Collapse
|
48
|
Deng P, Wang C, Wahlang B, Sexton T, Morris AJ, Hennig B. Co-exposure to PCB126 and PFOS increases biomarkers associated with cardiovascular disease risk and liver injury in mice. Toxicol Appl Pharmacol 2020; 409:115301. [PMID: 33096110 DOI: 10.1016/j.taap.2020.115301] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/08/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Polychlorinated biphenyl (PCB)126 and perfluorooctane sulfonic acid (PFOS) are halogenated organic pollutants of high concern. Exposure to these chemicals is ubiquitous, and can lead to potential synergistic adverse effects in individuals exposed to both classes of chemicals. The present study was designed to identify interactions between PCB126 and PFOS that might promote acute changes in inflammatory pathways associated with cardiovascular disease and liver injury. Male C57BL/6 mice were exposed to vehicle, PCB126, PFOS, or a mixture of both pollutants. Plasma and liver samples were collected at 48 h after exposure. Changes in the expression of hepatic genes involved in oxidative stress, inflammation, and atherosclerosis were investigated. Plasma and liver samples was analyzed using untargeted lipidomic method. Hepatic mRNA levels for Nqo1, Icam1, and PAI1 were significantly increased in the mixture-exposed mice. Plasma levels of PAI1, a marker of fibrosis and thrombosis, were also significantly elevated in the mixture-exposed group. Liver injury was observed only in the mixture-exposed mice. Lipidomic analysis revealed that co-exposure to the mixture enhanced hepatic lipid accumulation and elevated oxidized phospholipids levels. In summary, this study shows that acute co-exposure to PCB126 and PFOS in mice results in liver injury and increased cardiovascular disease risk.
Collapse
Affiliation(s)
- Pan Deng
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Chunyan Wang
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Banrida Wahlang
- Superfund Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Travis Sexton
- Division of Cardiovascular Medicine, The Gill Heart and Vascular Institute, College of Medicine, University of Kentucky, and Lexington Veterans Affairs Medical Center, Lexington, KY, 40536, USA
| | - Andrew J Morris
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, USA; Division of Cardiovascular Medicine, The Gill Heart and Vascular Institute, College of Medicine, University of Kentucky, and Lexington Veterans Affairs Medical Center, Lexington, KY, 40536, USA
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY 40536, USA; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
49
|
Qi W, Clark JM, Timme-Laragy AR, Park Y. Per- and Polyfluoroalkyl Substances and Obesity, Type 2 Diabetes and Non-alcoholic Fatty Liver Disease: A Review of Epidemiologic Findings. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2020; 102:1-36. [PMID: 33304027 PMCID: PMC7723340 DOI: 10.1080/02772248.2020.1763997] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/27/2020] [Indexed: 05/17/2023]
Abstract
Per- and polyfluoroalkyl substances, a group of fluoro-surfactants widely detected in the environment, wildlife and humans, have been linked to adverse health effects. A growing body of literature has addressed their effects on obesity, diabetes and non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis. This review summarizes the brief historical use and chemistry of per- and polyfluoroalkyl substances, routes of human exposure, as well as the epidemiologic evidence for associations between exposure to per- and polyfluoroalkyl substances and the development of obesity, diabetes and non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis. We identified 22 studies on obesity and 32 studies on diabetes, while only 1 study was found for non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis by searching PubMed for human studies. Approximately 2/3 of studies reported positive associations between per- and polyfluoroalkyl substances exposure and the prevalence of obesity and/or type 2 diabetes. Causal links between per- and polyfluoroalkyl substances and obesity, diabetes and non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis, however, require further large-scale prospective cohort studies combined with mechanistic laboratory studies to better assess these associations.
Collapse
Affiliation(s)
- Weipeng Qi
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - John M. Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Alicia R. Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
50
|
Temkin AM, Hocevar BA, Andrews DQ, Naidenko OV, Kamendulis LM. Application of the Key Characteristics of Carcinogens to Per and Polyfluoroalkyl Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1668. [PMID: 32143379 PMCID: PMC7084585 DOI: 10.3390/ijerph17051668] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a large class of environmentally persistent chemicals used in industrial and consumer products. Human exposure to PFAS is extensive, and PFAS contamination has been reported in drinking water and food supplies as well as in the serum of nearly all people. The most well-studied member of the PFAS class, perfluorooctanoic acid (PFOA), induces tumors in animal bioassays and has been associated with elevated risk of cancer in human populations. GenX, one of the PFOA replacement chemicals, induces tumors in animal bioassays as well. Using the Key Characteristics of Carcinogens framework for cancer hazard identification, we considered the existing epidemiological, toxicological and mechanistic data for 26 different PFAS. We found strong evidence that multiple PFAS induce oxidative stress, are immunosuppressive, and modulate receptor-mediated effects. We also found suggestive evidence indicating that some PFAS can induce epigenetic alterations and influence cell proliferation. Experimental data indicate that PFAS are not genotoxic and generally do not undergo metabolic activation. Data are currently insufficient to assess whether any PFAS promote chronic inflammation, cellular immortalization or alter DNA repair. While more research is needed to address data gaps, evidence exists that several PFAS exhibit one or more of the key characteristics of carcinogens.
Collapse
Affiliation(s)
- Alexis M. Temkin
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Barbara A. Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| | - David Q. Andrews
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Olga V. Naidenko
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Lisa M. Kamendulis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| |
Collapse
|