1
|
Hu M, Scott C. Toward the development of a molecular toolkit for the microbial remediation of per-and polyfluoroalkyl substances. Appl Environ Microbiol 2024; 90:e0015724. [PMID: 38477530 PMCID: PMC11022551 DOI: 10.1128/aem.00157-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated synthetic organic compounds that have been used extensively in various industries owing to their unique properties. The PFAS family encompasses diverse classes, with only a fraction being commercially relevant. These substances are found in the environment, including in water sources, soil, and wildlife, leading to human exposure and fueling concerns about potential human health impacts. Although PFAS degradation is challenging, biodegradation offers a promising, eco-friendly solution. Biodegradation has been effective for a variety of organic contaminants but is yet to be successful for PFAS due to a paucity of identified microbial species capable of transforming these compounds. Recent studies have investigated PFAS biotransformation and fluoride release; however, the number of specific microorganisms and enzymes with demonstrable activity with PFAS remains limited. This review discusses enzymes that could be used in PFAS metabolism, including haloacid dehalogenases, reductive dehalogenases, cytochromes P450, alkane and butane monooxygenases, peroxidases, laccases, desulfonases, and the mechanisms of microbial resistance to intracellular fluoride. Finally, we emphasize the potential of enzyme and microbial engineering to advance PFAS degradation strategies and provide insights for future research in this field.
Collapse
Affiliation(s)
- Miao Hu
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
2
|
Chetverikov S, Hkudaygulov G, Sharipov D, Starikov S, Chetverikova D. Biodegradation Potential of C 7-C 10 Perfluorocarboxylic Acids and Data from the Genome of a New Strain of Pseudomonas mosselii 5(3). TOXICS 2023; 11:1001. [PMID: 38133402 PMCID: PMC10748008 DOI: 10.3390/toxics11121001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The use of bacteria of the genus Pseudomonas-destructors of persistent pollutants for biotechnologies of environmental purification-is an interesting area of research. The aim of this work was to study the potential of Pseudomonas mosselii strain 5(3) isolated from pesticide-contaminated soil as a degrader of C7-C10 perfluorocarboxylic acids (PFCAs) and analyze its complete genome. The genome of the strain has been fully sequenced. It consists of a chromosome with a length of 5,676,241 b.p. and containing a total of 5134 genes, in particular, haloalkane dehalogenase gene (dhaA), haloacetate dehalogenase H-1 gene (dehH1), fluoride ion transporter gene (crcB) and alkanesulfonate monooxygenase gene (ssuE), responsible for the degradation of fluorinated compounds. The strain P. mosselii 5(3) for was cultivated for 7 days in a liquid medium with various C7-C10 PFCAs as the sole source of carbon and energy, and completely disposed of them. The results of LC-MS analysis showed that the transformation takes place due to perfluorohexanoic acid with the release of various levels of stoichiometry (depending on PFCA) of fluorine ion mineralization indicators determined by ion chromatography. Thus, Pseudomonas mosselii strain 5(3) demonstrates a genetically confirmed high potential for the decomposition of C7-C10 PFCA.
Collapse
Affiliation(s)
| | - Gaisar Hkudaygulov
- Ufa Institute of Biology, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (S.C.); (D.S.); (S.S.); (D.C.)
| | | | | | | |
Collapse
|
3
|
Khusnutdinova AN, Batyrova KA, Brown G, Fedorchuk T, Chai YS, Skarina T, Flick R, Petit AP, Savchenko A, Stogios P, Yakunin AF. Structural insights into hydrolytic defluorination of difluoroacetate by microbial fluoroacetate dehalogenases. FEBS J 2023; 290:4966-4983. [PMID: 37437000 DOI: 10.1111/febs.16903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Fluorine forms the strongest single bond to carbon with the highest bond dissociation energy among natural products. However, fluoroacetate dehalogenases (FADs) have been shown to hydrolyze this bond in fluoroacetate under mild reaction conditions. Furthermore, two recent studies demonstrated that the FAD RPA1163 from Rhodopseudomonas palustris can also accept bulkier substrates. In this study, we explored the substrate promiscuity of microbial FADs and their ability to defluorinate polyfluorinated organic acids. Enzymatic screening of eight purified dehalogenases with reported fluoroacetate defluorination activity revealed significant hydrolytic activity against difluoroacetate in three proteins. Product analysis using liquid chromatography-mass spectrometry identified glyoxylic acid as the final product of enzymatic DFA defluorination. The crystal structures of DAR3835 from Dechloromonas aromatica and NOS0089 from Nostoc sp. were determined in the apo-state along with the DAR3835 H274N glycolyl intermediate. Structure-based site-directed mutagenesis of DAR3835 demonstrated a key role for the catalytic triad and other active site residues in the defluorination of both fluoroacetate and difluoroacetate. Computational analysis of the dimer structures of DAR3835, NOS0089, and RPA1163 indicated the presence of one substrate access tunnel in each protomer. Moreover, protein-ligand docking simulations suggested similar catalytic mechanisms for the defluorination of both fluoroacetate and difluoroacetate, with difluoroacetate being defluorinated via two consecutive defluorination reactions producing glyoxylate as the final product. Thus, our findings provide molecular insights into substrate promiscuity and catalytic mechanism of FADs, which are promising biocatalysts for applications in synthetic chemistry and bioremediation of fluorochemicals.
Collapse
Affiliation(s)
- Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
- Biological Chemistry and Drug Discovery Division, School of Life Sciences, University of Dundee, UK
| | - Khorcheska A Batyrova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Tatiana Fedorchuk
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
| | - Yao Sheng Chai
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Alain-Pierre Petit
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Biological Chemistry and Drug Discovery Division, School of Life Sciences, University of Dundee, UK
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Health Research Innovation Centre, University of Calgary, AB, Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, UK
| |
Collapse
|
4
|
Alletto P, Garcia AM, Marchesan S. Short Peptides for Hydrolase Supramolecular Mimicry and Their Potential Applications. Gels 2023; 9:678. [PMID: 37754360 PMCID: PMC10529927 DOI: 10.3390/gels9090678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Hydrolases are enzymes that have found numerous applications in various industrial sectors spanning from pharmaceuticals to foodstuff and beverages, consumers' products such as detergents and personal care, textiles, and even for biodiesel production and environmental bioremediation. Self-assembling and gelling short peptides have been designed for their mimicry so that their supramolecular organization leads to the creation of hydrophobic pockets for catalysis to occur. Catalytic gels of this kind can also find numerous industrial applications to address important global challenges of our time. This concise review focuses on the last 5 years of progress in this fast-paced, popular field of research with an eye towards the future.
Collapse
Affiliation(s)
- Paola Alletto
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Ana Maria Garcia
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
5
|
Lu Y, Sen K, Yong C, Gunn DSD, Purton JA, Guan J, Desmoutier A, Abdul Nasir J, Zhang X, Zhu L, Hou Q, Jackson-Masters J, Watts S, Hanson R, Thomas HN, Jayawardena O, Logsdail AJ, Woodley SM, Senn HM, Sherwood P, Catlow CRA, Sokol AA, Keal TW. Multiscale QM/MM modelling of catalytic systems with ChemShell. Phys Chem Chem Phys 2023; 25:21816-21835. [PMID: 37097706 DOI: 10.1039/d3cp00648d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling.
Collapse
Affiliation(s)
- You Lu
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Kakali Sen
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Chin Yong
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - David S D Gunn
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - John A Purton
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Jingcheng Guan
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Alec Desmoutier
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Jamal Abdul Nasir
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xingfan Zhang
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Lei Zhu
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Qing Hou
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Joe Jackson-Masters
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Sam Watts
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Rowan Hanson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Harry N Thomas
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Omal Jayawardena
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Scott M Woodley
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Hans M Senn
- School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| | - Paul Sherwood
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - C Richard A Catlow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Alexey A Sokol
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Thomas W Keal
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| |
Collapse
|
6
|
Wackett LP. Nothing lasts forever: understanding microbial biodegradation of polyfluorinated compounds and perfluorinated alkyl substances. Microb Biotechnol 2022; 15:773-792. [PMID: 34570953 PMCID: PMC8913905 DOI: 10.1111/1751-7915.13928] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Poly- and perfluorinated chemicals, including perfluorinated alkyl substances (PFAS), are pervasive in today's society, with a negative impact on human and ecosystem health continually emerging. These chemicals are now subject to strict government regulations, leading to costly environmental remediation efforts. Commercial polyfluorinated compounds have been called 'forever chemicals' due to their strong resistance to biological and chemical degradation. Environmental cleanup by bioremediation is not considered practical currently. Implementation of bioremediation will require uncovering and understanding the rare microbial successes in degrading these compounds. This review discusses the underlying reasons why microbial degradation of heavily fluorinated compounds is rare. Fluorinated and chlorinated compounds are very different with respect to chemistry and microbial physiology. Moreover, the end product of biodegradation, fluoride, is much more toxic than chloride. It is imperative to understand these limitations, and elucidate physiological mechanisms of defluorination, in order to better discover, study, and engineer bacteria that can efficiently degrade polyfluorinated compounds.
Collapse
Affiliation(s)
- Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMN55108USA
| |
Collapse
|
7
|
Marchetto F, Roverso M, Righetti D, Bogialli S, Filippini F, Bergantino E, Sforza E. Bioremediation of Per- and Poly-Fluoroalkyl Substances (PFAS) by Synechocystis sp. PCC 6803: A Chassis for a Synthetic Biology Approach. Life (Basel) 2021; 11:1300. [PMID: 34947832 PMCID: PMC8707875 DOI: 10.3390/life11121300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/09/2023] Open
Abstract
One of the main concerns in industrialized countries is represented by per- and poly-fluoroalkyl substances (PFAS), persistent contaminants hardly to be dealt with by conventional wastewater treatment processes. Phyco-remediation was proposed as a green alternative method to treat wastewater. Synechocystis sp. PCC6803 is a unicellular photosynthetic organism candidate for bioremediation approaches based on synthetic biology, as it is able to survive in a wide range of polluted waters. In this work, we assessed the possibility of applying Synechocystis in PFAS-enriched waters, which was never reported in the previous literature. Respirometry was applied to evaluate short-term toxicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), which did not affect growth up to 0.5 and 4 mg L-1, respectively. Continuous and batch systems were used to assess the long-term effects, and no toxicity was highlighted for both compounds at quite high concentration (1 mg L-1). A partial removal was observed for PFOS and PFOA, (88% and 37%, with removal rates of about 0.15 and 0.36 mg L-1 d-1, respectively). Measurements in fractionated biomass suggested a role for Synechocystis in the sequestration of PFAS: PFOS is mainly internalized in the cell, while PFOA is somehow transformed by still unknown pathways. A preliminary bioinformatic search gave hints on transporters and enzymes possibly involved in such sequestration/transformation processes, opening the route to metabolic engineering in the perspective application of this cyanobacterium as a new phyco-remediation tool, based on synthetic biology.
Collapse
Affiliation(s)
- Francesca Marchetto
- Department of Industrial Engineering DII, University of Padova, 35131 Padova, Italy; (F.M.); (D.R.)
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (M.R.); (S.B.)
| | - Davide Righetti
- Department of Industrial Engineering DII, University of Padova, 35131 Padova, Italy; (F.M.); (D.R.)
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.F.); (E.B.)
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (M.R.); (S.B.)
| | - Francesco Filippini
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.F.); (E.B.)
| | | | - Eleonora Sforza
- Department of Industrial Engineering DII, University of Padova, 35131 Padova, Italy; (F.M.); (D.R.)
| |
Collapse
|
8
|
Cheng X, Ma L. Enzymatic synthesis of fluorinated compounds. Appl Microbiol Biotechnol 2021; 105:8033-8058. [PMID: 34625820 PMCID: PMC8500828 DOI: 10.1007/s00253-021-11608-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/31/2022]
Abstract
Fluorinated compounds are widely used in the fields of molecular imaging, pharmaceuticals, and materials. Fluorinated natural products in nature are rare, and the introduction of fluorine atoms into organic compound molecules can give these compounds new functions and make them have better performance. Therefore, the synthesis of fluorides has attracted more and more attention from biologists and chemists. Even so, achieving selective fluorination is still a huge challenge under mild conditions. In this review, the research progress of enzymatic synthesis of fluorinated compounds is summarized since 2015, including cytochrome P450 enzymes, aldolases, fluoroacetyl coenzyme A thioesterases, lipases, transaminases, reductive aminases, purine nucleoside phosphorylases, polyketide synthases, fluoroacetate dehalogenases, tyrosine phenol-lyases, glycosidases, fluorinases, and multienzyme system. Of all enzyme-catalyzed synthesis methods, the direct formation of the C-F bond by fluorinase is the most effective and promising method. The structure and catalytic mechanism of fluorinase are introduced to understand fluorobiochemistry. Furthermore, the distribution, applications, and future development trends of fluorinated compounds are also outlined. Hopefully, this review will help researchers to understand the significance of enzymatic methods for the synthesis of fluorinated compounds and find or create excellent fluoride synthase in future research.Key points• Fluorinated compounds are distributed in plants and microorganisms, and are used in imaging, medicine, materials science.• Enzyme catalysis is essential for the synthesis of fluorinated compounds.• The loop structure of fluorinase is the key to forming the C-F bond.
Collapse
Affiliation(s)
- Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China.
| |
Collapse
|
9
|
Kang H, Zheng M. Influence of the quantum mechanical region size in QM/MM modelling: A case study of fluoroacetate dehalogenase catalyzed C F bond cleavage. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Yue Y, Fan J, Xin G, Huang Q, Wang JB, Li Y, Zhang Q, Wang W. Comprehensive Understanding of Fluoroacetate Dehalogenase-Catalyzed Degradation of Fluorocarboxylic Acids: A QM/MM Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9817-9825. [PMID: 34080849 DOI: 10.1021/acs.est.0c08811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorochemicals are persistent, bioaccumulative, and toxic compounds that are widely tributed in the environment. Developing efficient biodegradation strategies to decompose the fluorochemicals via breaking the inert C-F bonds presents a holistic challenge. As a promising biodegradation enzyme candidate, fluoroacetate dehalogenase (FAcD) has been reported as the only non-metallic enzyme to catalyze the cleavage of the strong C-F bond. Here, we systematically investigated the catalytic actions of FAcD toward its natural substrate fluoroacetate using molecular dynamics simulations and quantum mechanism/molecular mechanism calculations. We propose that the enzymatic transformation involves four elementary steps, (I) C-F bond activation, (II) nucleophilic attack, (III) C-O bond cleavage, and (IV) proton transfer. Our results show that nucleophilic attack is the rate-determining step. However, for difluoroacetate and trifluoroacetate, C-F bond activation, instead of nucleophilic attack, becomes the rate-determining step. We show that FAcD, originally recognized as α-fluorocarboxylic acid degradation enzyme, can catalyze the defluorination of difluoroacetate to glyoxylate, which is captured by our high-resolution mass spectrometry experiments. In addition, we employed amino acid electrostatic analysis method to screen potential mutation hotspots for tuning FAcD's electrostatic environment to favor substrate conversion. The comprehensive understanding of catalytic mechanism will inform a rational enzyme engineering strategy to degrade fluorochemicals for benefits of environmental sustainability.
Collapse
Affiliation(s)
- Yue Yue
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Jiaqian Fan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Guoqing Xin
- Wuhan National High Magnetic Field Center (WHMFC), Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Qun Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Jian-Bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
11
|
Gul I, Le W, Jie Z, Ruiqin F, Bilal M, Tang L. Recent advances on engineered enzyme-conjugated biosensing modalities and devices for halogenated compounds. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Yue Y, Chen J, Bao L, Wang J, Li Y, Zhang Q. Fluoroacetate dehalogenase catalyzed dehalogenation of halogenated carboxylic acids: A QM/MM approach. CHEMOSPHERE 2020; 254:126803. [PMID: 32361540 DOI: 10.1016/j.chemosphere.2020.126803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Dehalogenation is one of the most important reactions in environmental pollution control, for instance, the degradation of persistent organic pollutants (POPs). Recently, fluoroacetate dehalogenase (FAcD) has been reported to catalyze the dehalogenation reactions, which shows great potential in treating halogenated pollutants. Here the dehalogenation mechanism catalyzed by FAcD was fully deciphered with the aid of quantum mechanics/molecular mechanics method. The results show that FAcD catalyzed dehalogenation efficiency follows the order of defluorination > dechlorination > debromination. The corresponding Boltzmann-weighted average barriers are 10.1, 19.7, and 20.9 kcal mol-1. Positive/negative correlations between activation barriers and structural parameters (e.g. distance and angle) for FAcD catalyzed dechlorination and debromination were established. Based on the structure-energy relationship, we propose that mutation of the binding pocket amino acids (e.g. His155, Trp156, Tyr219) to smaller proton donor amino acids (e.g. Serine, Threonine, Cysteine, Asparagine) may increase the efficiency for dechlorination and debromination. The results may of practical value for the efficient degradation of chlorined and bromined pollutants by harnessing FAcD.
Collapse
Affiliation(s)
- Yue Yue
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Jinfeng Chen
- School of Life Sciences, Westlake University, Hangzhou, 310000, PR China
| | - Lei Bao
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Junjie Wang
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Jinan, 250100, PR China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| |
Collapse
|
13
|
Song Z, Yue Y, Feng S, Sun H, Li Y, Xu F, Zhang Q, Wang W. Cysteine dioxygenase catalyzed C F bond cleavage: An in silico approach. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Zhang H, Tian S, Yue Y, Li M, Tong W, Xu G, Chen B, Ma M, Li Y, Wang JB. Semirational Design of Fluoroacetate Dehalogenase RPA1163 for Kinetic Resolution of α-Fluorocarboxylic Acids on a Gram Scale. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Shaixiao Tian
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Yue Yue
- Environment Research Institute, Shandong University, Qingdao 266237, People’s Republic of China
| | - Min Li
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Wei Tong
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Guangyu Xu
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Bo Chen
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, People’s Republic of China
| | - Jian-bo Wang
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 368 Youyi Road, Wuchang Wuhan 430062, People’s Republic of China
| |
Collapse
|