1
|
Fu L, Xu Y, Zhao D, Wu B, Xu Z. Analysis of coniferous tree growth gradients in relation to regional pollution and climate change in the Miyun Reservoir Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55635-55648. [PMID: 36897442 PMCID: PMC10121506 DOI: 10.1007/s11356-023-26295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Forests play a crucial role in regulating regional climate and mitigating local air pollution, but little is known about their responding to such changes. This study aimed to examine the potential responses of Pinus tabuliformis, the major coniferous tree species in the Miyun Reservoir Basin (MRB), along an air pollution gradient in Beijing. Tree rings were collected along a transect, and ring width (basal area increment, BAI) and chemical characteristics were determined and related to long-term climatic and environmental records. The results showed that Pinus tabuliformis showed an overall increase in intrinsic water-use efficiency (iWUE) at all sites, but the relationships between iWUE and BAI differed among the sites. The contribution of atmospheric CO2 concentration (ca) to tree growth was significant at the remote sites (> 90%). The study found that air pollution at these sites might have caused further stomatal closure, as evidenced by the higher δ13C levels (0.5 to 1‰ higher) during heavy pollution periods. The analysis of tree ring δ15N also revealed the potential of using δ15N to fingerprint major nitrogen (N) deposition, as shown in the increasing tree ring δ15N, and major nitrogen losses due to denitrification and leaching, as shown in the higher δ15N in tree rings during heavy rainfall events. Overall, the gradient analysis indicated the contributions of increasing ca, increasing water deficit and elevated air pollution to tree growth and forest development. The different BAI trajectories suggested that Pinus tabuliformis has the ability to adapt to the harsh environment in the MRB.
Collapse
Affiliation(s)
- Li Fu
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100101, China
- Centre for Planetary Health and Food Security and School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Yan Xu
- Centre for Planetary Health and Food Security and School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Dan Zhao
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingfang Wu
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihong Xu
- Centre for Planetary Health and Food Security and School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
2
|
Responses of Tree Growth and Intrinsic Water Use Efficiency to Environmental Factors in Central and Northern China in the Context of Global Warming. FORESTS 2022. [DOI: 10.3390/f13081209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Loess Plateau is a fragile ecological zone that is sensitive to climate change. The response, adaptation, and feedback of tree growth in forest ecosystems to global warming and CO2 enrichment are urgent scientific issues. Intrinsic water use efficiency (iWUE) is an important indicator for understanding forest ecosystem adaptability to climate change and CO2 enrichment. In this study, tree-ring width, tree-ring stable carbon isotope ratio (δ13C), and iWUE of P. tabulaeformis Carr. were established. Climate response analysis showed that temperature was the main limiting factor affecting radial tree growth and that relative humidity significantly affected the stable carbon isotope fractionation of tree rings. During 1645–2011, the iWUE increased by 27.1%. The responses of iWUE to climate factors and atmospheric CO2 concentrations (Ca) showed that the long-term variation in iWUE was affected by Ca, which could explain 69% of iWUE variation, and temperature was the main factor causing iWUE interannual variation. The ecosystem of P. tabulaeformis showed a positive response to rising Ca, as its carbon sequestration capacity increased. In response to global warming and CO2 enrichment, rising Ca promoted increases in iWUE but ultimately failed to offset the negative impact of warming on tree growth in the study area.
Collapse
|
3
|
Xiao Y, Liu S, Zhang M, Tong F, Xu Z, Ford R, Zhang T, Shi X, Wu Z, Luo T. Plant Functional Groups Dominate Responses of Plant Adaptive Strategies to Urbanization. FRONTIERS IN PLANT SCIENCE 2021; 12:773676. [PMID: 34917107 PMCID: PMC8669269 DOI: 10.3389/fpls.2021.773676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Urbanization causes alteration in atmospheric, soil, and hydrological factors and substantially affects a range of morphological and physiological plant traits. Correspondingly, plants might adopt different strategies to adapt to urbanization promotion or pressure. Understanding of plant traits responding to urbanization will reveal the capacity of plant adaptation and optimize the choice of plant species in urbanization green. In this study, four different functional groups (herbs, shrubs, subcanopies, and canopies, eight plant species totally) located in urban, suburban, and rural areas were selected and eight replicated plants were selected for each species at each site. Their physiological and photosynthetic properties and heavy metal concentrations were quantified to reveal plant adaptive strategies to urbanization. The herb and shrub species had significantly higher starch and soluble sugar contents in urban than in suburban areas. Urbanization decreased the maximum photosynthetic rates and total chlorophyll contents of the canopies (Engelhardtia roxburghiana and Schima superba). The herbs (Lophatherum gracile and Alpinia chinensis) and shrubs (Ardisia quinquegona and Psychotria rubra) species in urban areas had significantly lower nitrogen (N) allocated in the cell wall and leaf δ15N values but higher heavy metal concentrations than those in suburban areas. The canopy and subcanopy (Diospyros morrisiana and Cratoxylum cochinchinense) species adapt to the urbanization via reducing resource acquisition but improving defense capacity, while the herb and shrub species improve resource acquisition to adapt to the urbanization. Our current studies indicated that functional groups affected the responses of plant adaptive strategies to the urbanization.
Collapse
Affiliation(s)
- Yihua Xiao
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Shirong Liu
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Manyun Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Fuchun Tong
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Rebecca Ford
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Tianlin Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Xin Shi
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Zhongmin Wu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Tushou Luo
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
4
|
Zhang M, Niu Y, Wang W, Bai SH, Luo H, Tang L, Chen F, Xu Z, Guo X. Responses of microbial function, biomass and heterotrophic respiration, and organic carbon in fir plantation soil to successive nitrogen and phosphorus fertilization. Appl Microbiol Biotechnol 2021; 105:8907-8920. [PMID: 34734313 DOI: 10.1007/s00253-021-11663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
Carbon dioxide (CO2) emissions from forest ecosystems originate largely from soil respiration, and microbial heterotrophic respiration plays a critical role in determining organic carbon (C) stock. This study investigated the impacts of successive nitrogen (N) and phosphorus (P) fertilization after 9 years on soil organic C stock; CO2 emission; and microbial biomass, community, and function in a Chinese fir plantation. The annual fertilization rates were (1) CK, control without N or P fertilization; (2) N50, 50 kg N ha-1; (3) N100, 100 kg N ha-1; (4) P50, 50 kg P ha-1; (5) N50P50, 50 kg N ha-1 + 50 kg P ha-1; and (6) N100P50, 100 kg N ha-1 + 50 kg P ha-1. The N100P50 treatment had the highest cumulative soil CO2 emissions, but the CK treatment had the lowest cumulative soil CO2 emissions among all treatments. The declines of soil organic C (SOC) after successive 9-year fertilization were in the order of 100 kg N ha-1 year-1 > 50 kg N ha-1 year-1 > CK. Compared to the CK treatment, successive N fertilization significantly changed soil microbial communities at different application rates and increased the relative gene abundances of glycoside hydrolases, glycosyl transferases, carbohydrate-binding modules, and polysaccharide lyases at 100 kg N ha-1 year-1. Relative to P fertilization alone (50 kg P ha-1 year-1), combined N and P fertilization significantly altered the soil microbial community structure and favored more active soil microbial metabolism. Microbial community and metabolism changes caused by N fertilization could have enhanced CO2 emission from heterotrophic respiration and eventually led to the decrease in organic C stock in the forest plantation soil. KEY POINTS: • N fertilization, alone or with P, favored more active microbial metabolism genes. • 100 kg N ha-1 fertilization significantly changed microbial community and function. • N fertilization led to a "domino effect" on the decrease of soil C stock.
Collapse
Affiliation(s)
- Manyun Zhang
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.,Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
| | - Yun Niu
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.,Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.,Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Weijin Wang
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
| | - Shahla Hosseini Bai
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
| | - Handong Luo
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Li Tang
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
| | - Fusheng Chen
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhihong Xu
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia. .,Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xiaomin Guo
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
5
|
Imin B, Dai Y, Shi Q, Guo Y, Li H, Nijat M. Responses of two dominant desert plant species to the changes in groundwater depth in hinterland natural oasis, Tarim Basin. Ecol Evol 2021; 11:9460-9471. [PMID: 34306635 PMCID: PMC8293730 DOI: 10.1002/ece3.7766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
Groundwater is increasingly becoming a permanent and steady water source for the growth and reproduction of desert plant species due to the frequent channel cutoff events in arid inland river basins. Although it is widely acknowledged that the accessibility of groundwater has a significant impact on plant species maintaining their ecological function, little is known about the water use strategies of desert plant species to the groundwater availability in Daryaboyi Oasis, Central Tarim Basin. This study initially determined the desirable and stressing groundwater depths based on ecological and morphological parameters including UAV-based fractional vegetation cover (FVC) images and plant growth status. Then, leaf δ13C values of small- and big-sized plants were analyzed to reveal the water use strategies of two dominant woody species (Populus euphratica and Tamarix ramosissima) in response to the groundwater depth gradient. The changes in FVC and growth status of plants suggested that the actual groundwater depth should be kept at an appropriate range of about 2.1-4.3 m, and the minimum groundwater depth should be less than 7 m. This will ensure the protection of riparian woody plants at a normal growth state and guarantee the coexistence of both plant types. Under a desirable groundwater condition, water alternation (i.e., flooding and rising groundwater depth) was the main factor influencing the variation of plant water use efficiency. The obtained results indicated that big-sized plants are more salt-tolerant than small ones, and T. ramosissima has strong salt palatability than P. euphratica. With increasing groundwater depth, P. euphratica continuously decreases its growth status to maintain hydraulic efficiency in drought condition, while T. ramosissima mainly increases its water use efficiency first and decreases its growth status after then. Besides, in a drought condition, T. ramosissima has strong adaptability than P. euphratica. This study will be informative for ecological restoration and sustainable management of Daryaboyi Oasis and provides reference materials for future research programs.
Collapse
Affiliation(s)
- Bilal Imin
- Key Laboratory of Oasis EcologyCollege of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
- Institute of Arid Ecology and EnvironmentXinjiang UniversityUrumqiChina
| | - Yue Dai
- Key Laboratory of Oasis EcologyCollege of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
| | - Qingdong Shi
- Key Laboratory of Oasis EcologyCollege of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
- Institute of Arid Ecology and EnvironmentXinjiang UniversityUrumqiChina
| | - Yuchuan Guo
- Key Laboratory of Oasis EcologyCollege of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
| | - Hao Li
- Key Laboratory of Oasis EcologyCollege of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
- Institute of Arid Ecology and EnvironmentXinjiang UniversityUrumqiChina
| | - Marhaba Nijat
- Key Laboratory of Oasis EcologyCollege of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
- Institute of Arid Ecology and EnvironmentXinjiang UniversityUrumqiChina
| |
Collapse
|
6
|
Construction of Meteorological Simulation Knowledge Graph Based on Deep Learning Method. SUSTAINABILITY 2021. [DOI: 10.3390/su13031311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the maturity of meteorological simulation technology, the research literature in this field is undergoing a rapid increase. The published literature can provide useful guidance for current research to get scientific results; however, it tends to be rather time consuming to obtain exact knowledge from massive literature, and it is necessary to transform the literature into structured knowledge to meet the efficient management, sharing, and reuse of meteorological simulation knowledge. In this paper, methods of meteorological simulation knowledge extraction and knowledge graph construction are proposed. A deep learning model based on bilateral long short-term memory-conditional random field (BiLSTM-CRF) is used to extract the meteorological simulation knowledge from the massive literature. Then, the Neo4j graph database is used to construct the meteorological simulation knowledge graph. Based on the meteorological simulation knowledge graph, it can realize the structured storage and integration of meteorological simulation knowledge, which can bridge the gap in the transformation of massive literature to sharable and reusable knowledge. Furthermore, the meteorological simulation knowledge graph can be used as an expert resource and contribute to sustainable guidance and optimization for meteorological simulation research.
Collapse
|
7
|
Marchand W, Girardin MP, Hartmann H, Depardieu C, Isabel N, Gauthier S, Boucher É, Bergeron Y. Strong overestimation of water-use efficiency responses to rising CO 2 in tree-ring studies. GLOBAL CHANGE BIOLOGY 2020; 26:4538-4558. [PMID: 32421921 DOI: 10.1111/gcb.15166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
The carbon isotope ratio (δ13 C) in tree rings is commonly used to derive estimates of the assimilation-to-stomatal conductance rate of trees, that is, intrinsic water-use efficiency (iWUE). Recent studies have observed increased iWUE in response to rising atmospheric CO2 concentrations (Ca ), in many different species, genera and biomes. However, increasing rates of iWUE vary widely from one study to another, likely because numerous covarying factors are involved. Here, we quantified changes in iWUE of two widely distributed boreal conifers using tree samples from a forest inventory network that were collected across a wide range of growing conditions (assessed using the site index, SI), developmental stages and stand histories. Using tree-ring isotopes analysis, we assessed the magnitude of increase in iWUE after accounting for the effects of tree size, stand age, nitrogen deposition, climate and SI. We also estimated how growth conditions have modulated tree physiological responses to rising Ca . We found that increases in tree size and stand age greatly influenced iWUE. The effect of Ca on iWUE was strongly reduced after accounting for these two variables. iWUE increased in response to Ca , mostly in trees growing on fertile stands, whereas iWUE remained almost unchanged on poor sites. Our results suggest that past studies could have overestimated the CO2 effect on iWUE, potentially leading to biased inferences about the future net carbon balance of the boreal forest. We also observed that this CO2 effect is weakening, which could affect the future capacity of trees to resist and recover from drought episodes.
Collapse
Affiliation(s)
- William Marchand
- Centre d'étude de la forêt, Université du Québec à Montréal, Montreal, QC, Canada
- Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn Noranda, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Martin P Girardin
- Centre d'étude de la forêt, Université du Québec à Montréal, Montreal, QC, Canada
- Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn Noranda, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Claire Depardieu
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
- Chaire de recherche du Canada en génomique forestière, Université Laval, Sainte-Foy, QC, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
- Chaire de recherche du Canada en génomique forestière, Université Laval, Sainte-Foy, QC, Canada
| | - Sylvie Gauthier
- Centre d'étude de la forêt, Université du Québec à Montréal, Montreal, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Étienne Boucher
- GEOTOP, Université du Québec à Montréal, Montreal, QC, Canada
- Department of Geography, Université du Québec à Montréal, Montreal, QC, Canada
- Centre d'Études Nordiques, Université Laval, Quebec City, QC, Canada
| | - Yves Bergeron
- Centre d'étude de la forêt, Université du Québec à Montréal, Montreal, QC, Canada
- Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn Noranda, QC, Canada
| |
Collapse
|