1
|
Zhao J, Duan G, Chang J, Wang H, Zhu D, Li J, Zhu Y. Co-exposure to cyazofamid and polymyxin E: Variations in microbial community and antibiotic resistance in the soil-animal-plant system. ENVIRONMENTAL RESEARCH 2025; 273:121160. [PMID: 39986419 DOI: 10.1016/j.envres.2025.121160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Human activity is accelerating the emergence of fungal pathogens, prompting substantial efforts to discover novel fungicides. Meanwhile, the runoff and spray drift from agricultural fields adversely affect aquatic and terrestrial nontarget organisms. However, few studies have examined the effects of co-contamination by agrochemical fungicides and pharmaceutical antibiotics on microorganisms and antibiotic resistance genes (ARGs) in the soil-animal-plant system. To further explore the mechanisms, an investigation was conducted into the individual and combined effects of a widely used fungicide (cyazofamid, CZF) and a last-resort antibiotic (colistin, polymyxin E, PME) in the soil-earthworm-tomato system. This study revealed that CZF and PME co-contamination exerted synergistic toxicity, significantly reducing earthworm survival and inhibiting tomato growth. This study found that the structure of microbial communities was more severely disturbed by the fungicide CZF than by the antibiotic PME, with the most severe impact being that of CZF + PME co-contamination. Fungicides and antibiotics had significantly distinct effects on bacterial functional pathways: CZF and CZF + PME treatments enhanced compound degradation, whereas PME treatments promoted biological nitrogen cycling. Moreover, co-contamination significantly increased the abundance of insertional and plasmid-associated genes and number of total ARGs in bulk and rhizosphere soil. In addition, the relationships between bacterial communities and the antibiotic resistome were investigated. The analysis revealed that Gram-positive bacteria (Sporosarcina, Bacillus, and Rhodococcus) capable of resistance and degradation, as well as the genes MexB (multidrug) and aadA2 (aminoglycoside) were enriched. Taken together, interactions between co-pollutants can significantly increase toxicity levels and the risk of ARG proliferation. The findings provide new insights into the potential impacts of co-contamination in complex real-life environments, such as soil-animal-plant systems.
Collapse
Affiliation(s)
- Jun Zhao
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guilan Duan
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Chang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huili Wang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dong Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jianzhong Li
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongguan Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
2
|
Chen Z, Liu Y, Jiang L, Zhang C, Qian X, Gu J, Song Z. Bacterial outer membrane vesicles increase polymyxin resistance in Pseudomonas aeruginosa while inhibiting its quorum sensing. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135588. [PMID: 39181004 DOI: 10.1016/j.jhazmat.2024.135588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The persistent emergence of multidrug-resistant bacterial pathogens is leading to a decline in the therapeutic efficacy of antibiotics, with Pseudomonas aeruginosa (P. aeruginosa) emerging as a notable threat. We investigated the antibiotic resistance and quorum sensing (QS) system of P. aeruginosa, with a particular focused on outer membrane vesicles (OMVs) and polymyxin B as the last line of antibiotic defense. Our findings indicate that OMVs increase the resistance of P. aeruginosa to polymyxin B. The overall gene transcription levels within P. aeruginosa also reveal that OMVs can reduce the efficacy of polymyxin B. However, both OMVs and sublethal concentrations of polymyxin B suppressed the transcription levels of genes associated with the QS system. Furthermore, OMVs and polymyxin B acted in concert on the QS system of P. aeruginosa to produce a more potent inhibitory effect. This suppression was evidenced by a decrease in the secretion of virulence factors, impaired bacterial motility, and a notable decline in the ability to form biofilms. These results reveal that OMVs enhance the resistance of P. aeruginosa to polymyxin B, yet they collaborate with polymyxin B to inhibit the QS system. Our research contribute to a deeper understanding of the resistance mechanisms of P. aeruginosa in the environment, and provide new insights into the reduction of bacterial infections caused by P. aeruginosa through the QS system.
Collapse
Affiliation(s)
- Zhihui Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yucheng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Zhao J, Duan G, Zhu D, Li J, Zhu Y. Microbial-influenced pesticide removal co-occurs with antibiotic resistance gene variation in soil-earthworm-maize system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123010. [PMID: 38012967 DOI: 10.1016/j.envpol.2023.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Within human-influenced landscapes, pesticides cooccur with a variety of antibiotic stressors. However, the relationship between pesticides removal process and antibiotic resistance gene variation are not well understood. This study explored pesticide (topramezone, TPZ) and antibiotic (polymyxin E, PME) co-contamination using liquid chromatography-tandem mass spectrometry (LC-MS/MS), bacterial-16 S rRNA sequencing and high-throughput quantitative polymerase chain reaction (HT-qPCR) in a soil-earthworm-maize system. After incubating soil for 28 days with TPZ and PME (10 mg kg-1 dry weight), earthworm weight-gain, mortality rates, and maize plant weight-gain only differed slightly, but height-gain significantly decreased. PME significantly increased TPZ-removal in the soil. Accumulation of TPZ in earthworm's tissues may pose potential risks in the food chain. Combined pollution altered the microbial community structure and increased the abundance of functional microorganisms involved in aromatic compound degradation. Furthermore, maize rhizosphere can raise resistance genes, however earthworms can reduce resistance genes. Co-contamination increased absolute abundance of mobile genetic elements (MGEs) in bulk-soil samples, antibiotic resistance genes (ARGs) in skin samples and number of ARGs in bulk-soil samples, while decreased absolute abundance of transposase gene in bulk-soil samples and number of ARGs in rhizosphere-soil samples. Potential hosts harbouring ARGs may be associated with the antagonistic effect during resistance and detoxification of TPZ and PMB co-occurrence. These findings provide insights into the mechanism underlining pesticide removal regarding occurrence of ARGs in maize agroecosystem.
Collapse
Affiliation(s)
- Jun Zhao
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guilan Duan
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dong Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jianzhong Li
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongguan Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
4
|
Wichmann N, Gruseck R, Zumstein M. Hydrolysis of Antimicrobial Peptides by Extracellular Peptidases in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:717-726. [PMID: 38103013 PMCID: PMC10785756 DOI: 10.1021/acs.est.3c06506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Several antimicrobial peptides (AMPs) are emerging as promising novel antibiotics. When released into wastewater streams after use, AMPs might be hydrolyzed and inactivated by wastewater peptidases─resulting in a reduced release of active antimicrobials into wastewater-receiving environments. A key step towards a better understanding of the fate of AMPs in wastewater systems is to investigate the activity and specificity of wastewater peptidases. Here, we quantified peptidase activity in extracellular extracts from different stages throughout the wastewater treatment process. For all four tested municipal wastewater treatment plants, we detected highest activity in raw wastewater. Complementarily, we assessed the potential of enzymes in raw wastewater extracts to biotransform 10 selected AMPs. We found large variations in the susceptibility of AMPs to enzymatic transformation, indicating substantial substrate specificity of extracted enzymes. To obtain insights into peptidase specificities, we searched for hydrolysis products of rapidly biotransformed AMPs and quantified selected products using synthetic standards. We found that hydrolysis occurred at specific sites and that these sites were remarkably conserved across the four tested wastewaters. Together, these findings provide insights into the fate of AMPs in wastewater systems and can inform the selection and design of peptide-based antibiotics that are hydrolyzable by wastewater peptidases.
Collapse
Affiliation(s)
- Natalie Wichmann
- Division
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Department
of Environmental Microbiology, Swiss Federal
Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - Richard Gruseck
- Division
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Michael Zumstein
- Division
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| |
Collapse
|
5
|
Dwivedi M, Parmar MD, Mukherjee D, Yadava A, Yadav H, Saini NP. Biochemistry, Mechanistic Intricacies, and Therapeutic Potential of Antimicrobial Peptides: An Alternative to Traditional Antibiotics. Curr Med Chem 2024; 31:6110-6139. [PMID: 37818561 DOI: 10.2174/0109298673268458230926105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
The emergence of drug-resistant strains of pathogens becomes a major obstacle to treating human diseases. Antibiotics and antivirals are in the application for a long time but now these drugs are not much effective anymore against disease-causing drugresistant microbes and gradually it is becoming a serious complication worldwide. The development of new antibiotics cannot be a stable solution to treat drug-resistant strains due to their evolving nature and escaping antibiotics. At this stage, antimicrobial peptides (AMPs) may provide us with novel therapeutic leads against drug-resistant pathogens. Structurally, antimicrobial peptides are mostly α-helical peptide molecules with amphiphilic properties that carry the positive charge (cationic) and belong to host defense peptides. These positively charged AMPs can interact with negatively charged bacterial cell membranes and may cause the alteration in electrochemical potential on bacterial cell membranes and consequently lead to the death of microbial cells. In the present study, we will elaborate on the implication of AMPs in the treatment of various diseases along with their specific structural and functional properties. This review will provide information which assists in the development of new synthetic peptide analogues to natural AMPs. These analogues will eliminate the limitations of natural AMPs like toxicity and severe hemolytic activities.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Meet Dineshbhai Parmar
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | | | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Nandini Pankaj Saini
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| |
Collapse
|
6
|
Zhou Y, Liu MJ, Liao XY, Chen YT, Liao QX, Lin JD, Lin HR, Huang YH. New Attempts to Inhibit Methicillin-Resistant Staphylococcus aureus Biofilm? A Combination of Daptomycin and Azithromycin. Infect Drug Resist 2023; 16:7029-7040. [PMID: 37954509 PMCID: PMC10638656 DOI: 10.2147/idr.s433439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Objective To investigate the antibacterial impact of daptomycin and azithromycin in vitro on methicillin-resistant Staphylococcus aureus (MRSA) biofilm. Methods (1) Measure the strain growth curve and the biofilm formation curve. (2) Determine the minimum inhibitory concentrations (MICs) of daptomycin and azithromycin. (3) Investigate the antibacterial impact of the combination of daptomycin and azithromycin. (4) Perform the evaluation of the intervention impact of antimicrobial agents on MRSA biofilm. (5) Observe the biofilm after intervention with the antibacterial agent. Results (1) MRSA exhibited three phases: lag phase (0-4 h), logarithmic growth (4-8 h) and stationary phase after 18 h; its biofilm began to form at 6 h, semi-matured at 24 h, and reached maturity after 48 h. (2) The MICs of daptomycin and azithromycin were 8 μg/mL and greater than 256 μg/mL, respectively. (3) The combination of daptomycin and azithromycin has an additive effect on MRSA (Fractional Inhibitory Concentration Index [FICI] 0.625) (FICI = MIC of drug A in combination/MIC of drug A alone + MIC of drug B in combination/MIC of drug B alone). Evaluation criteria: Synergistic effect is considered when FICI ≤ 0.5; additive effect is considered when 0.5 < FICI ≤ 1; irrelevant effect is considered when 1 < FICI ≤ 2; antagonistic effect is considered when FICI > 2). (4) Daptomycin or azithromycin at MICs inhibited not only the growth of planktonic bacteria but also the formation of biofilm. (5) The combination of both, in which group the ratio of live/dead bacteria is low and the biofilm morphology was incomplete, was more productive than monotherapy in against biofilm. Conclusion Both daptomycin and azithromycin have anti-MRSA biofilm activity, and daptomycin is dominant. The fact that the combination of both can significantly inhibit the further maturation of MRSA biofilm and destroy already formed biofilm demonstrates the superiority of the combination over the monotherapy.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Intensive Care Unit, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, People’s Republic of China
| | - Ming-Jun Liu
- Department of Infection, People’s Hospital of YangJiang, YangJiang, 529500, People’s Republic of China
| | - Xiu-Yu Liao
- Department of Intensive Care Unit, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, People’s Republic of China
| | - Yu-Ting Chen
- Department of Gastroenterology, Fuzhou NO. 1 Hospital, Fuzhou, 350000, People’s Republic of China
| | - Qiu-Xia Liao
- Department of Intensive Care Unit, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, People’s Republic of China
| | - Jian-Dong Lin
- Department of Intensive Care Unit, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, People’s Republic of China
| | - Hai-Rong Lin
- Department of Intensive Care Unit, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Ying-Hong Huang
- Department of Intensive Care Unit, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, People’s Republic of China
| |
Collapse
|
7
|
Zhao J, Duan G, Zhu Y, Zhu D. Gut microbiota and transcriptome response of earthworms (Metaphire guillelmi) to polymyxin B exposure. J Environ Sci (China) 2023; 133:37-47. [PMID: 37451787 DOI: 10.1016/j.jes.2022.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 07/18/2023]
Abstract
Polymyxin B (PMB) has received widespread attention for its use as a last-line therapy against multidrug-resistant bacterial infection. However, the consequences of unintended PMB exposure on organisms in the surrounding environment remain inconclusive. Therefore, this study investigated the effects of soil PMB residue on the gut microbiota and transcriptome of earthworms (Metaphire guillelmi). The results indicated that the tested doses of PMB (0.01-100 mg/kg soil) did not significantly affect the richness and Shannon's diversity index of the earthworm gut microbiota, but PMB altered its community structure and taxonomic composition. Moreover, PMB significantly affected Lysobacter, Aeromonas, and Sphingomonas in the soil microbiota, whereas Pseudomonas was significantly impacted the earthworm gut microbiota. Furthermore, active bacteria responded more significantly to PMB than the total microbial community. Bacterial genera such as Acinetobacter and Bacillus were highly correlated with differential expression of some genes, including up-regulated genes associated with folate biosynthesis, sulphur metabolism, and the IL-17 signalling pathway, and downregulated genes involved in vitamin digestion and absorption, salivary secretion, other types of O-glycan biosynthesis, and the NOD-like receptor signalling pathway. These results suggest that adaptation to PMB stress by earthworms involves changes in energy metabolism, their immune and digestive systems, as well as glycan biosynthesis. The study findings help elucidate the relationship between earthworms and their microbiota, while providing a reference for understanding the environmental risks of PMB.
Collapse
Affiliation(s)
- Jun Zhao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Dong Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
8
|
Mathieu-Denoncourt A, Duperthuy M. The VxrAB two-component system is important for the polymyxin B-dependent activation of the type VI secretion system in Vibrio cholerae O1 strain A1552. Can J Microbiol 2023; 69:393-406. [PMID: 37343290 DOI: 10.1139/cjm-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The type VI secretion system (T6SS) is used by bacteria for virulence, resistance to grazing, and competition with other bacteria. We previously demonstrated that the role of the T6SS in interbacterial competition and in resistance to grazing is enhanced in Vibrio cholerae in the presence of subinhibitory concentrations of polymyxin B. Here, we performed a global quantitative proteomic analysis and a targeted transcriptomic analysis of the T6SS-known regulators in V. cholerae grown with and without polymyxin B. The proteome of V. cholerae is greatly modified by polymyxin B with more than 39% of the identified cellular proteins displaying a difference in their abundance, including T6SS-related proteins. We identified a regulator whose abundance and expression are increased in the presence of polymyxin B, vxrB, the response regulator of the two-component system VxrAB (VCA0565-66). In vxrAB, vxrA and vxrB deficient mutants, the expression of both hcp copies (VC1415 and VCA0017), although globally reduced, was not modified by polymyxin B. These hcp genes encode an identical protein Hcp, which is the major component of the T6SS syringe. Thus, the upregulation of the T6SS in the presence of polymyxin B appears to be, at least in part, due to the two-component system VxrAB.
Collapse
Affiliation(s)
- Annabelle Mathieu-Denoncourt
- Département de Microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Marylise Duperthuy
- Département de Microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
9
|
Seller C, Varga L, Börgardts E, Vogler B, Janssen E, Singer H, Fenner K, Honti M. Do biotransformation data from laboratory experiments reflect micropollutant degradation in a large river basin? WATER RESEARCH 2023; 235:119908. [PMID: 37003113 DOI: 10.1016/j.watres.2023.119908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Identifying a chemical's potential for biotransformation in the aquatic environment is crucial to predict its fate and manage its potential hazards. Due to the complexity of natural water bodies, especially river networks, biotransformation is often studied in laboratory experiments, assuming that study outcomes can be extrapolated to compound behavior in the field. Here, we investigated to what extent outcomes of laboratory simulation studies indeed reflect biotransformation kinetics observed in riverine systems. To determine in-field biotransformation, we measured loads of 27 wastewater treatment plant effluent-borne compounds along the Rhine and its major tributaries during two seasons. Up to 21 compounds were detected at each sampling location. Measured compound loads were used in an inverse model framework of the Rhine river basin to derive k'bio,field values - a compound-specific parameter describing the compounds' average biotransformation potential during the field studies. To support model calibration, we performed phototransformation and sorption experiments with all the study compounds, identifying 5 compounds that are susceptible towards direct phototransformation and determining Koc values covering four orders of magnitude. On the laboratory side, we used a similar inverse model framework to derive k'bio,lab values from water-sediment experiments run according to a modified OECD 308-type protocol. The comparison of k'bio,lab and k'bio,field revealed that their absolute values differed, pointing towards faster transformation in the Rhine river basin. Yet, we could demonstrate that relative rankings of biotransformation potential and groups of compounds with low, moderate and high persistence agree reasonably well between laboratory and field outcomes. Overall, our results provide evidence that laboratory-based biotransformation studies using the modified OECD 308 protocol and k'bio values derived thereof bear considerable potential to reflect biotransformation of micropollutants in one of the largest European river basins.
Collapse
Affiliation(s)
- Carolin Seller
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Laura Varga
- Department of Sanitary and Environmental Engineering, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Elizabeth Börgardts
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Bernadette Vogler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Elisabeth Janssen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Heinz Singer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland.
| | - Mark Honti
- ELKH-BME Water Research Group, 1111 Budapest, Hungary.
| |
Collapse
|
10
|
Peng L, Peng C, Fu S, Qiu Y. Adsorption-desorption and degradation of colistin in soils under aerobic conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113989. [PMID: 35994905 DOI: 10.1016/j.ecoenv.2022.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/11/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Colistin has broad-spectrum activity against Gram-negative bacteria and has been considered as the last-resort treatment for multiantibiotic-resistant Gram-negative bacteria infections in human. And it is also world widely utilized as a veterinary medicine for the promotion of growth, prevention and control of diseases in livestock and poultry. Extensive use of colistin in husbandry results in the introduction of large amounts of colistin to the surrounding environment via animals' urine and feces, potentially inducing the prevalence of colistin resistance bacteria and the impact of the ecological environment. The study investigated the adsorption, desorption and degradation of colistin in soils using high sensitivity UPLC-MS/MS assays. An MS based assay was established to directly determine colistin in the soil. It was observed that the moderate adsorption affinity of colistin to the three soils with adsorption strength (1/n) ranging from 0.6897 to 1.3333. Colistin exhibited the highest adsorption affinity to the sandy loam, followed by the sand and loam. Despite of different characteristics of three soils, the adsorption capacity of the three soils was comparable. The adsorption of colistin to the three types of soils analyzed was irreversible. The degradation experiments showed that the degradation of colistin in the sandy loam was relatively slow with a degradation half-life in a range of 13.2-29.7 days when colistin was applied to the sandy loam at a level of 10 ~ 40 µg/g. The degradation of colistin occurred in the mixture of the sandy loam and feces recovered from the colistin treated broiler as well. 25% of colistin remained in the mixture under environmental conditions after 14 days. Composting the sandy loam by directly covering the soil surface with colistin treated broilers' feces resulted in the introduction of colistin to the sandy loam. Colistin was observed in both the topsoil from the contact surface and sandy loam samples collected 20 cm below the contact surface. The understanding of adsorption-desorption behaviors, degradation and mobility of colistin in soils might offer insights into the potential impact of colistin on the emergence and prevalence of resistant bacteria and the ecological environment.
Collapse
Affiliation(s)
- Lijuan Peng
- School of Food Science and Engineering, Wuhan Polytechnic University, n ChangQing Garden, Hankou, Wuhan 430023, PR China.
| | - Chun Peng
- School of Animal Science, Wuhan Polytechnic University, ChangQing Garden, Hankou, Wuhan 430023, PR China.
| | - Shulin Fu
- School of Animal Science, Wuhan Polytechnic University, ChangQing Garden, Hankou, Wuhan 430023, PR China.
| | - Yinsheng Qiu
- School of Animal Science, Wuhan Polytechnic University, ChangQing Garden, Hankou, Wuhan 430023, PR China.
| |
Collapse
|
11
|
Xu Y, Li H, Tan L, Li Q, Liu W, Zhang C, Gao Y, Wei X, Gong Q, Zheng X. What role does organic fertilizer actually play in the fate of antibiotic resistome and pathogenic bacteria in planting soil? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115382. [PMID: 35623127 DOI: 10.1016/j.jenvman.2022.115382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/08/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Organic fertilizer increase antibiotic resistance genes (ARGs) and bacterial pathogens have widely documented. However, how organic fertilizer is involved in changing soil ARGs and pathogenic bacteria after long-term (≥5 years) application remains unclear. Herein, the ARGs and pathogenic bacteria were compared in organic fertilized soils (AF) and non-fertilized soils (NF), and the contribution of input sources (organic fertilizer, irrigation water, air and background soil) on soil ARGs also was determined in this study. Results showed that the abundances of some ARGs, such as vanR and aac(6')-I in AF, were significantly higher than these of NF (p < 0.05). And a relatively higher abundance of potential pathogens, especially, Salmonella enterica and Stenotrophomonas maltophilia, in AF was observed. This indicated that organic fertilizer application can maintain a high level of some soil ARGs and pathogenic bacteria for at least 5 years. Traceability analysis unearthed that organic fertilizer application mainly increased its own contribution to soil ARGs from 1.16% to 9.05%, as well reduced the contribution of background soil, suggesting that the increase in soil ARGs may be partly attributable to organic fertilizer inputs. Notably, organic fertilizer application did not significantly alter the contribution ratio of input sources to microorganisms, but there was a clear change in the composition of soil microorganisms, which meant that the effect of the input source on the microorganism may emanate from other factors, rather than direct inputs. Subsequent structural equation demonstrated that organic fertilizer application significantly enhanced the effect of environmental factors on ARGs, and also indirectly increased the influence of communities on ARGs. Collectively, under the long-term fertilization, the role of organic fertilizers on soil ARGs not just stems from its own input, and also dominates the influence of environmental factors on ARGs. This study elucidates main causes for the difference in ARGs in AF vs. NF and enlightens actual role of organic fertilizer in them.
Collapse
Affiliation(s)
- Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, China; Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, China
| | - Qian Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, China
| | - Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, China
| | - Yi Gao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, China
| | - Qiong Gong
- Shangrao Normal University, Jiangxi, 334001, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, China.
| |
Collapse
|
12
|
Bilal M, Diarra M, Islam MR, Lepp D, Mastin Wood ER, Topp E, Bittman S, Zhao X. Effects of litter from antimicrobial-fed broiler chickens on soil bacterial community structure and diversity. Can J Microbiol 2022; 68:643-653. [PMID: 35944283 DOI: 10.1139/cjm-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined changes in soil bacterial community composition and diversity in response to fertilization with litter from chickens fed diet with no antibiotics, bambermycin, penicillin, bacitracin, salinomycin, and mix of salinomycin and bacitracin. Litter was applied to 24 agricultural-plots. Non-fertilized plots were used as a negative control. Soil samples collected from the studied plots were used to quantify Escherichia coli by plate counts, and Clostridium perfringens by qPCR. The 16S-rRNA gene sequencing was performed for microbiota analysis. Following litter application in December, the population size of E.coli was 5.4 log CFU/g, however, regardless of treatments the result revealed 5.2 and 1.4 log CFU/g of E.coli in soil sampled in January and March, respectively. Fertilization with antibiotic treated litter increased (P < 0.05) the relative abundance of Proteobacteria, Actinobacteria and Firmicutes in soil, but decreased Acidobacteria and Verrucomicrobia groups. The alpha-diversity parameters were higher (P < 0.05) in non-fertilized soil compared to the fertilized ones, suggesting that litter application was a major factor in shaping the soil bacterial communities. These results may help develop efficient litter management strategies like composting, autoclaving, or anaerobic digestion of poultry litter before application to land for preservation of soil health and crop productivity.
Collapse
Affiliation(s)
- Muhammad Bilal
- McGill University, Deptartment of Animal Science, Montreal, Quebec, Canada;
| | - Moussa Diarra
- Agriculture and Agri-Food Canada (AAFC), Guelph, Canada;
| | | | - Dion Lepp
- Agriculture and Agri-Food Canada, Guelph, Canada;
| | | | - Edward Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada;
| | - Shabtai Bittman
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada;
| | - Xin Zhao
- McGill University, Deptartment of Animal Science, Montreal, Quebec, Canada;
| |
Collapse
|
13
|
Chen X, Han J, Wang S. Integrated evolutionary analysis reveals the resistance risk to antimicrobial peptides in Staphylococcus aureus. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Jin L, Dong H, Sun D, Wang L, Qu L, Lin S, Yang Q, Zhang X. Biological Functions and Applications of Antimicrobial Peptides. Curr Protein Pept Sci 2022; 23:226-247. [DOI: 10.2174/1389203723666220519155942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Despite antimicrobial resistance, which is attributed to the misuse of broad-spectrum antibiotics,
antibiotics can indiscriminately kill pathogenic and beneficial microorganisms. These events
disrupt the delicate microbial balance in both humans and animals, leading to secondary infections
and other negative effects. Antimicrobial peptides (AMPs) are functional natural biopolymers in
plants and animals. Due to their excellent antimicrobial activities and absence of microbial resistance,
AMPs have attracted enormous research attention. We reviewed the antibacterial, antifungal, antiviral,
antiparasitic, as well as antitumor properties of AMPs and research progress on AMPs. In addition,
we highlighted various recommendations and potential research areas for their progress and
challenges in practical applications.
Collapse
Affiliation(s)
- Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Hao Dong
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Linkai Qu
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Sue Lin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology
and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
15
|
Grant TM, Rennison D, Cervin G, Pavia H, Hellio C, Foulon V, Brimble MA, Cahill P, Svenson J. Towards eco-friendly marine antifouling biocides - Nature inspired tetrasubstituted 2,5-diketopiperazines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152487. [PMID: 34953845 DOI: 10.1016/j.scitotenv.2021.152487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Marine biofouling plagues all maritime industries at vast economic and environmental cost. Previous and most current methods to control biofouling have employed highly persistent toxins and heavy metals, including tin, copper, and zinc. These toxic methods are resulting in unacceptable environmental harm and are coming under immense regulatory pressure. Eco-friendly alternatives are urgently required to effectively mitigate the negative consequence of biofouling without causing collateral harm. Amphiphilic micropeptides have recently been shown to exhibit excellent broad-spectrum antifouling activity, with a non-toxic mode of action and innate biodegradability. The present work focused on incorporating the pharmacophore derived from amphiphilic micropeptides into a 2,5-diketopiperazine (DKP) scaffold. This privileged structure is present in a vast number of natural products, including marine natural product antifoulants, and provides advantages of synthetic accessibility and adaptability. A novel route to symmetrical tetrasubstituted DKPs was developed and a library of amphiphilic 2,5-DKPs were subsequently synthesised. These biodegradable compounds were demonstrated to be potent marine antifoulants displaying broad-spectrum activity in the low micromolar range against a range of common marine fouling organisms. The outcome of planned coating and field trials will dictate the future development of the lead compounds.
Collapse
Affiliation(s)
- Thomas M Grant
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - David Rennison
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Gunnar Cervin
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Claire Hellio
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Valentin Foulon
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Patrick Cahill
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand.
| |
Collapse
|
16
|
Mathieu-Denoncourt A, Duperthuy M. Secretome analysis reveals a role of subinhibitory concentrations of polymyxin B in the survival of Vibrio cholerae mediated by the type VI secretion system. Environ Microbiol 2021; 24:1133-1149. [PMID: 34490971 DOI: 10.1111/1462-2920.15762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Abstract
Antimicrobials are commonly used in prevention of infections including in aquaculture, agriculture and medicine. Subinhibitory concentrations of antimicrobial peptides can modulate resistance, virulence and persistence effectors in Gram-negative pathogens. In this study, we investigated the effect of subinhibitory concentrations of polymyxin B (PmB) on the secretome of Vibrio cholerae, a natural inhabitant of aquatic environments and the pathogen responsible for the cholera disease. Our proteomic approach revealed that the abundance of many extracellular proteins is affected by PmB and some of them are detected only either in the presence or in the absence of PmB. The type VI secretion system (T6SS) secreted hemolysin-coregulated protein (Hcp) displayed an increased abundance in the presence of PmB. Hcp is also more abundant in the bacterial cells in the presence of PmB and hcp expression is upregulated upon PmB supplementation. No effect of the T6SS on antimicrobial resistance was observed. Conversely, PmB increases the T6SS-dependent cytotoxicity of V. cholerae towards the amoeba Dictyostelium discoideum and its ability to compete with Escherichia coli.
Collapse
Affiliation(s)
- Annabelle Mathieu-Denoncourt
- Department de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Marylise Duperthuy
- Department de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| |
Collapse
|
17
|
Metolina P, Lourenço FR, Teixeira ACSC. UVC- and UVC/H 2O 2-Driven nonribosomal peptide antibiotics degradation: application to zinc bacitracin as a complex emerging contaminant. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:97-112. [PMID: 33174789 DOI: 10.1080/10934529.2020.1841499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Zinc bacitracin (Zn-Bc) belongs to the group of nonribosomal peptide antibiotics (NRPA), comprising a mixture of non-biodegradable congeners characterized by complex structures containing cyclic, polycyclic, and branched chains. However, reports on the use of AOPs for the degradation of NRPA are non-existent. In this context, the present work investigated the photodegradation of Zn-Bc in aqueous solution by direct photolysis and the UVC/H2O2 process. The effects of the specific UVC photon emission rate and initial H2O2 concentration were studied following a Doehlert-design response surface approach. The results showed that all congeners photolyzed at the highest UVC doses in the absence of hydrogen peroxide, with a calculated quantum yield of 0.0141 mol Zn-Bc mol photons-1. However, no TOC removal was observed after 120 minutes of irradiation, suggesting the disruption of the peptide bonds in the antibiotic molecules without significant changes in the amino acid residues. The addition of H2O2 substantially accelerated Zn-Bc photodegradation, resulting in a remarkable removal of up to 71% of TOC. Most importantly, the antimicrobial activity against Staphylococcus aureus could be completely removed by both treatments. These findings point out that the UVC/H2O2 process can be straightly engineered for the treatment of metalloantibiotics-containing wastewater in pharmaceutical facilities.
Collapse
Affiliation(s)
- Patrícia Metolina
- Research Group in Advanced Oxidation Processes (AdOx), Chemical Systems Engineering Center - Department of Chemical Engineering, University of São Paulo, São Paulo, Brazil
| | | | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes (AdOx), Chemical Systems Engineering Center - Department of Chemical Engineering, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Lemnaru (Popa) GM, Truşcă RD, Ilie CI, Țiplea RE, Ficai D, Oprea O, Stoica-Guzun A, Ficai A, Dițu LM. Antibacterial Activity of Bacterial Cellulose Loaded with Bacitracin and Amoxicillin: In Vitro Studies. Molecules 2020; 25:molecules25184069. [PMID: 32899912 PMCID: PMC7571097 DOI: 10.3390/molecules25184069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
The use of bacterial cellulose (BC) in skin wound treatment is very attractive due to its unique characteristics. These dressings’ wet environment is an important feature that ensures efficient healing. In order to enhance the antimicrobial performances, bacterial-cellulose dressings were loaded with amoxicillin and bacitracin as antibacterial agents. Infrared characterization and thermal analysis confirmed bacterial-cellulose binding to the drug. Hydration capacity showed good hydrophilicity, an efficient dressing’s property. The results confirmed the drugs’ presence in the bacterial-cellulose dressing’s structure as well as the antimicrobial efficiency against Staphylococcus aureus and Escherichia coli. The antimicrobial assessments were evaluated by contacting these dressings with the above-mentioned bacterial strains and evaluating the growth inhibition of these microorganisms.
Collapse
Affiliation(s)
- Georgiana-Mădălina Lemnaru (Popa)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Roxana Doina Truşcă
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Cornelia-Ioana Ilie
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Roxana Elena Țiplea
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Ovidiu Oprea
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
- Correspondence: (O.O.); (A.F.)
| | - Anicuța Stoica-Guzun
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Anton Ficai
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
- Correspondence: (O.O.); (A.F.)
| | - Lia-Mara Dițu
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania; or
| |
Collapse
|
19
|
Patrulea V, Borchard G, Jordan O. An Update on Antimicrobial Peptides (AMPs) and Their Delivery Strategies for Wound Infections. Pharmaceutics 2020; 12:E840. [PMID: 32887353 PMCID: PMC7560145 DOI: 10.3390/pharmaceutics12090840] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial infections occur when wound healing fails to reach the final stage of healing, which is usually hindered by the presence of different pathogens. Different topical antimicrobial agents are used to inhibit bacterial growth due to antibiotic failure in reaching the infected site, which is accompanied very often by increased drug resistance and other side effects. In this review, we focus on antimicrobial peptides (AMPs), especially those with a high potential of efficacy against multidrug-resistant and biofilm-forming bacteria and fungi present in wound infections. Currently, different AMPs undergo preclinical and clinical phase to combat infection-related diseases. AMP dendrimers (AMPDs) have been mentioned as potent microbial agents. Various AMP delivery strategies that are used to combat infection and modulate the healing rate-such as polymers, scaffolds, films and wound dressings, and organic and inorganic nanoparticles-have been discussed as well. New technologies such as Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated protein (CRISPR-Cas) are taken into consideration as potential future tools for AMP delivery in skin therapy.
Collapse
Affiliation(s)
- Viorica Patrulea
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Olivier Jordan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
20
|
Scapin S, Formaggio F, Glisenti A, Biondi B, Scocchi M, Benincasa M, Peggion C. Sustainable, Site-Specific Linkage of Antimicrobial Peptides to Cotton Textiles. Macromol Biosci 2020; 20:e2000199. [PMID: 32852141 DOI: 10.1002/mabi.202000199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/07/2020] [Indexed: 11/10/2022]
Abstract
A new general method to covalently link a peptide to cotton via thiazolidine ring formation is developed. Three different analogues of an ultrashort antibacterial peptide are synthesized to create an antibacterial fabric. The chemical ligation approach to the heterogeneous phase made up of insoluble cellulose fibers and a peptide solution in water is adapted. The selective click reaction occurs between an N-terminal cysteine on the peptide and an aldehyde on the cotton matrix. The aldehyde is generated on the primary alcohol of glucose by means of the enzyme laccase and the cocatalyst 2,2,6,6-tetramethylpiperidine-1-oxyl. This keeps the pyranose rings intact and may bring a benefit to the mechanical properties of the fabric. The presence of the peptide on cotton is demonstrated through instant colorimetric tests, UV spectroscopy, IR spectroscopy, and X-ray photoelectron spectroscopy analysis. The antibacterial activity of the peptides is maintained even after their covalent attachment to cotton fibers.
Collapse
Affiliation(s)
- Stefano Scapin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Antonella Glisenti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131, Padova, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127, Trieste, Italy
| | - Monica Benincasa
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127, Trieste, Italy
| | - Cristina Peggion
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
21
|
Manure as a Potential Hotspot for Antibiotic Resistance Dissemination by Horizontal Gene Transfer Events. Vet Sci 2020; 7:vetsci7030110. [PMID: 32823495 PMCID: PMC7558842 DOI: 10.3390/vetsci7030110] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022] Open
Abstract
The increasing demand for animal-derived foods has led to intensive and large-scale livestock production with the consequent formation of large amounts of manure. Livestock manure is widely used in agricultural practices as soil fertilizer worldwide. However, several antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria are frequently detected in manure and manure-amended soils. This review explores the role of manure in the persistence and dissemination of ARGs in the environment, analyzes the procedures used to decrease antimicrobial resistance in manure and the potential impact of manure application in public health. We highlight that manure shows unique features as a hotspot for antimicrobial gene dissemination by horizontal transfer events: richness in nutrients, a high abundance and diversity of bacteria populations and antibiotic residues that may exert a selective pressure on bacteria and trigger gene mobilization; reduction methodologies are able to reduce the concentrations of some, but not all, antimicrobials and microorganisms. Conjugation events are often seen in the manure environment, even after composting. Antibiotic resistance is considered a growing threat to human, animal and environmental health. Therefore, it is crucial to reduce the amount of antimicrobials and the load of antimicrobial resistant bacteria that end up in soil.
Collapse
|
22
|
Deslouches B, Montelaro RC, Urish KL, Di YP. Engineered Cationic Antimicrobial Peptides (eCAPs) to Combat Multidrug-Resistant Bacteria. Pharmaceutics 2020; 12:pharmaceutics12060501. [PMID: 32486228 PMCID: PMC7357155 DOI: 10.3390/pharmaceutics12060501] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing rate of antibiotic resistance constitutes a global health crisis. Antimicrobial peptides (AMPs) have the property to selectively kill bacteria regardless of resistance to traditional antibiotics. However, several challenges (e.g., reduced activity in the presence of serum and lack of efficacy in vivo) to clinical development need to be overcome. In the last two decades, we have addressed many of those challenges by engineering cationic AMPs de novo for optimization under test conditions that typically inhibit the activities of natural AMPs, including systemic efficacy. We reviewed some of the most promising data of the last two decades in the context of the advancement of the field of helical AMPs toward clinical development.
Collapse
Affiliation(s)
- Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
- Correspondence: ; Tel.: +1-412-624-0103
| | - Ronald C. Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Ken L. Urish
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Yuanpu P. Di
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
| |
Collapse
|