1
|
Li X, Zang N, Zhang N, Pang L, Lv L, Meng X, Lv X, Leng J. DNA damage resulting from human endocrine disrupting chemical exposure: Genotoxicity, detection and dietary phytochemical intervention. CHEMOSPHERE 2023; 338:139522. [PMID: 37478996 DOI: 10.1016/j.chemosphere.2023.139522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
In recent years, exposure to endocrine disrupting chemicals (EDCs) has posed an increasing threat to human health. EDCs are major risk factors in the occurrence and development of many diseases. Continuous DNA damage triggers severe pathogenic consequences, such as cancer. Beyond their effects on the endocrine system, EDCs genotoxicity is also worthy of attention, owing to the high accessibility and bioavailability of EDCs. This review investigates and summarizes nearly a decade of DNA damage studies on EDC exposure, including DNA damage mechanisms, detection methods, population marker analysis, and the application of dietary phytochemicals. The aims of this review are (1) to systematically summarize the genotoxic effects of environmental EDCs (2) to comprehensively summarize cutting-edge measurement methods, thus providing analytical solutions for studies on EDC exposure; and (3) to highlight critical data on the detoxification and repair effects of dietary phytochemicals. Dietary phytochemicals decrease genotoxicity by playing a major role in the detoxification system, and show potential therapeutic effects on human diseases caused by EDC exposure. This review may support research on environmental toxicology and alternative chemo-prevention for human EDC exposure.
Collapse
Affiliation(s)
- Xiaoqing Li
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Ningzi Zang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Nan Zhang
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Lijian Pang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Ling Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiansheng Meng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiaodong Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
2
|
Qiu W, He H, Fan L, Feng X, Li M, Dong C, Li Z, Liu W, Liang R, Zhang Y, Zhang Y, Gu P, Wang B, Chen W. Ambient temperature exposure causes lung function impairment: The evidence from Controlled Temperature Study in Healthy Subjects (CTSHS). Int J Hyg Environ Health 2023; 252:114214. [PMID: 37392524 DOI: 10.1016/j.ijheh.2023.114214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND The effect of non-optimal ambient temperatures (low and high temperatures) on lung function and the underlying mechanisms remains unclear. METHODS Forty-three (20 males, 23 females) healthy non-obese volunteers with an average of 23.9 years participated in the controlled temperature study. All volunteers underwent three temperature exposures in a sequence (moderate [18 °C], low [6 °C], and high [30 °C] temperatures) lasting 12 h with air pollutants controlled. lung function parameters (forced vital capacity [FVC], forced expiratory volume in 1 s [FEV1], and peak expiratory flow [PEF]) were determined in each exposure. Blood and urine samples were collected after each exposure and assayed for inflammatory markers [C-reactive protein (CRP), procalcitonin (PCT), platelet-lymphocyte ratio (PLR), and neutrophil-lymphocyte ratio (NLR)] and oxidative damage markers [protein carbonylation (PCO), 4-hydroxy-2-nominal-mercapturic acid (HNE-MA), 8-iso-prostaglandin-F2α (8-isoPGF2α), and 8-hydroxy-2-deoxyguanosine (8-OHdG)]. Mixed-effects models were constructed to assess the changes of the above indexes under low or high temperatures relative to moderate temperature, and then the repeated measures correlation analyses were performed. RESULTS Compared with moderate temperature, a 2.20% and 2.59% net decrease in FVC, FEV1, and a 5.68% net increase for PEF were observed under low-temperature exposure, while a 1.59% net decrease in FVC and a 7.29% net increase in PEF under high-temperature exposure were found (all P < 0.05). In addition, low temperature elevated inflammatory markers (PCT, PLR, and NLR) and oxidative damage markers (8-isoPGF2α, 8-OHdG), and high temperature elevated HNE-MA. Repeated measures correlation analyses revealed that PCT (r = -0.33) and NLR (r = -0.31) were negatively correlated with FVC and HNE-MA (r = -0.35) and 8-OHdG (r = -0.31) were negatively correlated with the FEV1 under low-temperature exposure (all P < 0.05). CONCLUSION Non-optimal ambient temperatures exposure alters lung function, inflammation, and oxidative damage. Inflammation and oxidative damage might be involved in low temperature-related lung function reduction.
Collapse
Affiliation(s)
- Weihong Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Heng He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaobing Feng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Minjing Li
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chaoqian Dong
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenzhen Li
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ruyi Liang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yingdie Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yongfang Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Pei Gu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
3
|
The Role of CD40, CD86, and Glutathione S-Transferase Omega 1 in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Can Respir J 2022; 2022:6810745. [PMID: 36051533 PMCID: PMC9427324 DOI: 10.1155/2022/6810745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/16/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Objective. The aim of the study was to explore the relevance of CD40, CD86, and GSTO1 with the pathogenesis of COPD. Methods. Patients with acute exacerbation of COPD were contrasted with the healthy and nonsmoking ones and smoking but without COPD ones. The changes of CD40, CD86, and GSTO1 in the peripheral blood, collected from different groups, were detected by flow cytometry and western blotting, respectively. Results. Compared with the nonsmoking group and smoking but without the COPD group, the expression of CD40 and CD86 of the patients with COPD increased significantly, but the expression of GSTO1 decreased. CD40 and CD86 were negatively correlated with FEV1%, while GSTO1 was positively correlated with FEV1% and negatively correlated with CD40 and CD86. Conclusion. CD40, CD86, and GSTO1 may play a role in the pathogenesis of COPD, and they are related to the severity of COPD and the degree of changes in the lung function.
Collapse
|
4
|
Zhang L, Wang H, Yang Z, Fang B, Zeng H, Meng C, Rong S, Wang Q. Personal PM 2.5-bound PAH exposure, oxidative stress and lung function: The associations and mediation effects in healthy young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118493. [PMID: 34780758 DOI: 10.1016/j.envpol.2021.118493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 05/16/2023]
Abstract
Decreased lung function is an early hazard of respiratory damage from fine particulate matter (PM2.5) exposure. Limited studies have explored the association between PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and lung function, but studies at the personal level in healthy young adults are scarce. Here, we assessed personal PM2.5 and PM2.5-bound PAH levels in a panel of 45 healthy young adults by a time-weighted model. The aims were to investigate the relationship between personal exposure and lung function by a linear mixed effect model, and to explore the mediating effects of oxidative stress in this association. The results showed that personal exposure to PM2.5 and PAHs had the greatest negative effect on forced expiratory volume in 1 s (FEV1), peak expiratory flow rate (PEF) and forced expiratory flow between 25% and 75% vital capacity (FEF25-75) at lag 3 days. An IQR increase in personal PM2.5 exposure was associated with a change of 0.35% (95% CI: 0.27%, 0.42%) in FEV1, 0.39% (95% CI: 0.29%, 0.47%) in PEF and 0.36% (95% CI: 0.27%, 0.45%) in FEF25-75. An IQR increase in personal PAH exposure was associated with a decrease of 0.63% (95% CI: 0.55%, 0.69%) in FEV1, 0.69% (95% CI: 0.61%, 0.75%) in PEF and 0.66% (95% CI: 0.57%, 0.72%) in FEF25-75. Additionally, exposure to PM2.5 and PAHs resulted in the strongest positive effects on urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Of these, 8-OHdG mediated 10.33%, 8.87% and 9.45% of the associations of personal PM2.5 exposure with FEV1, PEF and FEF25-75, respectively. Our results revealed that personal exposure to PM2.5 and PAHs was associated with lung function decline in healthy young adults, and urinary 8-OHdG mediated the association between personal PM2.5 and lung function.
Collapse
Affiliation(s)
- Lei Zhang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hongwei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ze Yang
- Department of Occupational and Environmental Health, Tianjin Medical University, Tianjin, 300041, China
| | - Bo Fang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Hao Zeng
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Chunyan Meng
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China
| | - Suying Rong
- Department of Clinical Medicine, Tangshan Vocational and Technical College, Tangshan, 063210, Hebei, China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, Caofeidian, Tangshan, 063210, Hebei, China; Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
5
|
Mu G, Zhou M, Wang B, Cao L, Yang S, Qiu W, Nie X, Ye Z, Zhou Y, Chen W. Personal PM 2.5 exposure and lung function: Potential mediating role of systematic inflammation and oxidative damage in urban adults from the general population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142522. [PMID: 33032136 DOI: 10.1016/j.scitotenv.2020.142522] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Short-term effects of fine particulate matter (PM2.5) exposure on lung function have been reported. However, few studies have assessed PM2.5 exposure on the personal level, and the mechanism underlying the effects of PM2.5 exposure on lung function remains less clear. OBJECTIVES To evaluate the association between personal PM2.5 exposure and lung function alteration in general population and to explore the roles of systematic inflammation and oxidative damage in this association. METHODS A total of 7685 lung function tests were completed among 4697 urban adults in Wuhan, China. Plasma C-reactive protein (CRP), urinary 8-iso-prostaglandin-F2α (8-iso-PGF2α) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were measured. Personal PM2.5 exposure levels were estimated using an estimation model from the actual measurements of individual PM2.5 levels in 191 participants. Mixed linear models were used to evaluate the association between personal PM2.5 exposure and lung function. Mediation analyses were conducted to investigate the roles of CRP, 8-iso-PGF2α and 8-OHdG in above associations. RESULTS After adjusting for confounders, each 10 μg/m3 increase in the previous-day personal PM2.5 exposure was associated with 2.94 mL, 2.02 mL and 16.14 mL/s decreases in forced vital capacity (FVC), forced expiration volume in 1 s (FEV1) and peak expiratory flow, respectively. The associations were more obvious among never smokers compared with current smokers. Cumulative 7-day exposure to PM2.5 led to the strongest adverse effects on lung function. Among never smokers with high PM2.5 exposure levels, a positive relationship was observed between personal PM2.5 level and urinary 8-iso-PGF2α, and 8-iso-PGF2α meditated 4.69% and 12.30% of the association between the 7-day moving PM2.5 concentration and FVC and FEV1, respectively. We did not observe a significant positive association between PM2.5 exposure and plasma CRP or urinary 8-OHdG. CONCLUSION Short-term personal exposure to PM2.5 is associated with reduced pulmonary ventilation function. Urinary 8-iso-PGF2α partly mediates these associations.
Collapse
Affiliation(s)
- Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Qiu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
6
|
Okeleji LO, Ajayi AF, Adebayo-Gege G, Aremu VO, Adebayo OI, Adebayo ET. Epidemiologic evidence linking oxidative stress and pulmonary function in healthy populations. Chronic Dis Transl Med 2021; 7:88-99. [PMID: 34136768 PMCID: PMC8180443 DOI: 10.1016/j.cdtm.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Respiratory health in the general population declines regardless of the presence of pulmonary diseases. Oxidative stress has been implicated as one of the mechanisms involved in respiratory dysfunction. This review was to evaluate studies that relate oxidative stress factors with pulmonary function among the general population without prior respiratory illnesses. The search yielded 54 citations. Twenty-one studies qualified for incorporation in this review. Owing to the heterogeneity of the review, studies were discussed based on identified oxidative stress factors responsible for pulmonary dysfunction. Oxidative stress biomarkers, including gene polymorphisms of nuclear factor erythroid 2-related factor 2, heme oxygenase 1, glutathione S transferase, superoxide dismutase, and lipid peroxidation products were involved in lung function decline. In addition, the antioxidant status of individuals in reference to dietary antioxidant intake and exposure to environmental pollutants affected oxidative stress and pulmonary function, as indicated by forced expired volume in one second, forced vital capacity, and forced expiratory flow at 25%–75%. This review indicated that oxidative stress is implicated in the gradual decline of lung function among the general population, and gene polymorphism along the antioxidant defense line and/or their interaction with air pollutants reduce lung function. Different polymorphic forms among individuals explain why the rate of lung function decline differs among people. Dietary antioxidants have respiratory health benefits in antioxidant gene polymorphic forms. Therefore, the genetic composition of an individual may be considered for monitoring and identifying people at risk of respiratory illnesses.
Collapse
Affiliation(s)
- Lateef Olabisi Okeleji
- Cardio-thoracic Unit, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Osun state, Nigeria
| | - Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Grace Adebayo-Gege
- Department of Physiology, Baze University, Kuchigoro, Jabi, Abuja, Nigeria
| | - Victoria Oyetayo Aremu
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | - Emmanuel Tayo Adebayo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
7
|
Furue M, Ishii Y, Tsukimori K, Tsuji G. Aryl Hydrocarbon Receptor and Dioxin-Related Health Hazards-Lessons from Yusho. Int J Mol Sci 2021; 22:ijms22020708. [PMID: 33445793 PMCID: PMC7828254 DOI: 10.3390/ijms22020708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
Poisoning by high concentrations of dioxin and its related compounds manifests variable toxic symptoms such as general malaise, chloracne, hyperpigmentation, sputum and cough, paresthesia or numbness of the extremities, hypertriglyceridemia, perinatal abnormalities, and elevated risks of cancer-related mortality. Such health hazards are observed in patients with Yusho (oil disease in Japanese) who had consumed rice bran oil highly contaminated with 2,3,4,7,8-pentachlorodibenzofuran, polychlorinated biphenyls, and polychlorinated quaterphenyls in 1968. The blood concentrations of these congeners in patients with Yusho remain extremely elevated 50 years after onset. Dioxins exert their toxicity via aryl hydrocarbon receptor (AHR) through the generation of reactive oxygen species (ROS). In this review article, we discuss the pathogenic implication of AHR in dioxin-induced health hazards. We also mention the potential therapeutic use of herbal drugs targeting AHR and ROS in patients with Yusho.
Collapse
Affiliation(s)
- Masutaka Furue
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan;
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence: ; Tel.: +81-92-642-5581; Fax: +81-92-642-5600
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Kiyomi Tsukimori
- Department of Obstetrics, Perinatal Center, Fukuoka Children’s Hospital, Fukuoka 813-0017, Japan;
| | - Gaku Tsuji
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan;
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
Liang Y, Tang Z, Jiang Y, Ai C, Peng J, Liu Y, Chen J, Zhang J, Cai Z. Serum metabolic changes associated with dioxin exposure in a Chinese male cohort. ENVIRONMENT INTERNATIONAL 2020; 143:105984. [PMID: 32712422 DOI: 10.1016/j.envint.2020.105984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Dioxins, a group of persistent organic pollutants, have been proved to correlate with ranges of diseases by activating the aryl hydrocarbon receptor (AhR). However, previous dioxin toxicity studies primarily focused on the activation of AhR with signaling pathways at gene and protein levels. The investigation of underlying mechanisms at the metabolic level is still necessary. In this study, serum samples of 48 and 47 healthy participants with the highest and lowest dioxin levels based on quartile distribution of the serum dioxin concentrations of 215 male adults were selected for metabolomics analysis by using liquid chromatography coupled with orbitrap high-resolution mass spectrometry to investigate dioxin-related metabolic responses. The identified potential biomarkers included acylcarnitines, fatty acids and derivatives, glycerophospholipids, etc. suggested that metabolic pathways such as fatty acid β-oxidation, essential fatty acid metabolism, arachidonic acid metabolism, glycerophospholipid and sphingolipid metabolism and purine metabolism were disturbed by dioxin exposure. The results indicated that people with high dioxin exposure levels were at the potential health risks of inflammation, liver and cardiovascular diseases. The metabolic findings may help understand the link between dioxin exposure and the diseases.
Collapse
Affiliation(s)
- Yanshan Liang
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region; Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhi Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China; Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Chunyan Ai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinling Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yuan Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinru Chen
- Songgang Preventive Health Center of Baoan District, Shenzhen, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Zongwei Cai
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|