Gerig BS, Chaloner DT, Rediske RR, Paterson G, Lamberti GA. Pacific salmon as vectors of environmental contaminants: An experimental test confirms synoptic surveys in natural streams.
ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023;
336:122355. [PMID:
37567402 DOI:
10.1016/j.envpol.2023.122355]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Pacific salmon transfer large quantities of material to tributaries during their spawning migrations, including carcass tissue and labile nutrients but also persistent organic pollutants (POPs) and heavy metals. We conducted a Before-After-Control-Intervention experiment by adding salmon carcasses and eggs to a Michigan (USA) stream that had never received inputs from non-native salmon to understand the bioaccumulation and persistence of biotransported contaminants. Our experimental outcomes were compared to previous studies using meta-analysis. Coincident with the introduction of salmon, the PCB and DDE burden of resident trout significantly increased. However, we did not observe changes in total mercury (Hg). Two years after the salmon addition experiment concluded, resident trout POP concentrations had returned to pre-addition levels, with no difference between the treatment and control reaches. Analysis of effect sizes suggested that the contaminant response observed in our experiment is consistent with field survey observations. Our study suggested that the consumption of salmon eggs drove the increase in POP burden of resident trout while Hg bioaccumulation was influenced by watershed sources. Critically, our study suggests that ecosystems are capable of quickly recovering from POP inputs from species migrations if contaminant sources are removed.
Collapse