1
|
Branco PTBS, Sousa SIV, Dudzińska MR, Ruzgar DG, Mutlu M, Panaras G, Papadopoulos G, Saffell J, Scutaru AM, Struck C, Weersink A. A review of relevant parameters for assessing indoor air quality in educational facilities. ENVIRONMENTAL RESEARCH 2024; 261:119713. [PMID: 39094896 DOI: 10.1016/j.envres.2024.119713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Indoor air quality (IAQ) in educational facilities is crucial due to the extended time students spend in those environments, affecting their health, academic performance, and attendance. This paper aimed to review relevant parameters (building characteristics and factors related with occupancy and activities) for assessing IAQ in educational facilities, and to identify the parameters to consider when performing an IAQ monitoring campaign in schools. It also intended to identify literature gaps and suggest future research directions. A narrative literature review was conducted, focusing on seven key parameters: building location, layout and construction materials, ventilation and air cleaning systems, finishing materials, occupant demographics, occupancy, and activities. The findings revealed that carbon dioxide (CO2) levels were predominantly influenced by classroom occupancy and ventilation rates, while particulate matter (PM) concentrations were significantly influenced by the building's location, design, and occupant activities. Furthermore, this review highlighted the presence of other pollutants, such as trace metals, polycyclic aromatic hydrocarbons (PAHs), carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), and radon, linking them to specific factors within the school environment. Different IAQ patterns, and consequently different parameters, were observed in various school areas, including classrooms, canteens, gymnasiums, computer rooms, and laboratories. While substantial literature exists on IAQ in schools, significant gaps still remain. This study highlighted the need for more studies in middle and high schools, as well as in other indoor microenvironments within educational settings beyond classrooms. Additionally, it underscored the need for comprehensive exposure assessments, long-term studies, and the impacts of new materials on IAQ including the effects of secondary reactions on surfaces. Seasonal variations and the implications of emerging technologies were also identified as requiring further investigation. Addressing those gaps through targeted research and considering the most updated standards and guidelines for IAQ, could lead to define more effective strategies for improving IAQ and safeguarding the students' health and performance.
Collapse
Affiliation(s)
- Pedro T B S Branco
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Sofia I V Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Marzenna R Dudzińska
- Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 38D, 20-618, Lublin, Poland.
| | | | - Mustafa Mutlu
- Vocational School of Yenisehir Ibrahim Orhan, Bursa Uludag University, 16900, Yenisehir, Turkey.
| | - Georgios Panaras
- Department of Mechanical Engineering, University of Western Macedonia, Kozani, 50131, Greece.
| | - Giannis Papadopoulos
- Department of Mechanical Engineering, University of Western Macedonia, Kozani, 50131, Greece.
| | | | | | - Christian Struck
- Saxion University of Applied Science, Sustainable Building Technology, M. H. Tromplaan 28, 7513 AB, Enschede, the Netherlands.
| | - Annemarie Weersink
- Saxion University of Applied Science, Sustainable Building Technology, M. H. Tromplaan 28, 7513 AB, Enschede, the Netherlands.
| |
Collapse
|
2
|
Zhao Y, Liu S, Wang W, Li L, Zhang W, Ji X, Yang D, Guo X, Deng F. Associations of indoor airborne microbiome with lung function: evidence from a randomized, double-blind, crossover study of microbial intervention. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2020-2035. [PMID: 39355928 DOI: 10.1039/d4em00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Microorganisms constitute an essential component of the indoor ecosystem and may pose potential health risks after inhalation. However, evidence regarding the impact of indoor airborne microbiome on general respiratory health is scarce. Additionally, while air purification has been shown to be an effective strategy for controlling culturable bioaerosols, its impact on indoor airborne microbiome remains unclear. To determine the impact of indoor airborne microbial exposure on lung function, and whether and how air purification can modify indoor airborne microbiome, we conducted a randomized, double-blind, crossover study employing air purification intervention among 68 healthy young adults in Beijing, China. Indoor airborne bacteria and fungi were characterized using amplicon sequencing technology and quantified by qPCR. Our results indicated positive associations between indoor airborne microbial α-diversity and lung function indices; however, adverse effects from total microbial load were observed. Males were more susceptible to microbial exposure than females. Beneficial effects from richness in Actinobacteria, Bacteroidia, Oxyphotobacteria, Bacilli, Clostridia, Alphaproteobacteria, Gammaproteobacteria, Dothideomycetes, and Sordariomycetes, and detrimental effects from five Proteobacteria genera, including Dechloromonas, Hydrogenophaga, Klebsiella, Pseudomonas, and Tolumonas, were also identified. Air purification contributed to decreased fungal diversity and total fungal load, but not the overall microbial community structure. Our study demonstrates the significant role of indoor airborne microbiome in regulating human respiratory health and provides inspiration for improving health through manipulation of indoor microbiome. Meanwhile, our study also underscores the importance of balancing the potential benefits from decreased microbial load and the underlying risks from reduced microbial diversity while applying environmental microbial interventions.
Collapse
Affiliation(s)
- Yetong Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Xuezhao Ji
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
- Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Marchand G, Wingert L, Viegas C, Caetano L, Viegas S, Twaruzek M, Lacombe N, Lanoie D, Valois I, Gouin F, Soszczyńska E, Kosicki R, Dias M, Debia M. Assessment of waste workers occupational risk to microbial agents and cytotoxic effects of mixed contaminants present in the air of waste truck cabin and ventilation filters. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:145-162. [PMID: 38166349 DOI: 10.1080/10962247.2023.2299424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
Workers in the waste-processing industry are potentially exposed to high concentrations of biological contaminants, leading to respiratory and digestive problems and skin irritations. However, few data on the exposure of waste collection truck (WCT) drivers are available. The goal was to document the microbial risk of the waste collection truck (WCT) workers while in the vehicle cab. Long-period sampling using the truck air filters (CAF) and short time ambient air sampling in the cab were used. The potential release of microbial particles from CAFs was also investigated since it could contribute to the microbial load of the cabin air. A combination of analytical methods also helped assess the complex mixture of the biological agents. Aspergillus sections Fumigati and Flavi, E. coli, Enterobacter spp. and Legionella spp. were detected in the CAF of trucks collecting three types of waste. The highest levels of bacteria and fungi were found in the CAF from organic WCT. The highest endotoxin concentrations in CAF were 300 EU/cm2. Most of the CAF showed cytotoxic effects on both lung cells and hepatocytes. Only one mycotoxin was detected in a CAF. The maximal concentrations in the ambient WCT air varied according to the type of waste collected. The highest proportion (84%) of the air samples without cytotoxic effects on the lungs cells was for the recyclable material WCTs. The results revealed the potential microbial risk to workers from a complex mixture of bio-contaminants in the cabs of vehicles collecting all types of waste. The sustained cytotoxic effect indicates the potential adverse health-related impact of mixed contaminants (biological and non-biological) for the workers. Overall, this study highlights the benefits of using complementary sampling strategy and combined analytical methods for a the assessment of the microbial risk in work environments and the need to implement protective measures for the workers.Implications: Exposure to microbial agents is a well-known occupational hazard in the waste management sector. No previous study had evaluated the cytotoxicity of ambient air and ventilation filters to document worker exposure to a combination of contaminants during waste collection. This research confirms the usefulness of ventilation filters for long-term characterization of exposure to infectious agents, azole-resistant fungi, coliform bacteria and mycotoxin. Overall, this study highlights the importance of using several sampling and analysis methods for a comprehensive assessment of microbial risk in work environments, as well as the need to implement appropriate protective measures for collection workers.
Collapse
Affiliation(s)
- Genevieve Marchand
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Canada
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Loïc Wingert
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Canada
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Carla Viegas
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, In-stituto Politécnico de Lisboa, Lisboa, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Liliana Caetano
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, In-stituto Politécnico de Lisboa, Lisboa, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Magdalena Twaruzek
- Faculty of Biological Sciences, Department of Physiology and Toxicology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Nancy Lacombe
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Delphine Lanoie
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Isabelle Valois
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Canada
| | - Francois Gouin
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Ewelina Soszczyńska
- Faculty of Biological Sciences, Department of Physiology and Toxicology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Robert Kosicki
- Faculty of Biological Sciences, Department of Physiology and Toxicology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Marta Dias
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, In-stituto Politécnico de Lisboa, Lisboa, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Canada
| |
Collapse
|
4
|
Hu PT, Liu DH, Cao ZG, Wei H, Zhu FJ, Ma WL, Zhang ZF, Liu LY, Feng JL, Li YF, Li YF, Li YF. Effectively removing gaseous polycyclic aromatic hydrocarbons (PAHs) by willow catkins: Do you still dislike the catkins floating? JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131639. [PMID: 37196441 DOI: 10.1016/j.jhazmat.2023.131639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
The floating catkins generated by willow and poplar trees have been criticized for spreading germ and causing fire for decades. It has been found that catkins are with a hollow tubular structure, which made us wonder if the floating catkins can adsorb atmospheric pollutions. Thus, we conducted a project in Harbin, China to investigate whether and how willow catkins could adsorb atmospheric polycyclic aromatic hydrocarbons (PAHs). The results suggest that both the catkins floating in the air and on the ground preferred to adsorb gaseous PAHs rather than particulate PAHs. Moreover, 3- and 4-ring PAHs were the dominating compositions adsorbed by catkins, which significantly increased with exposure time. The gas/catkins partition (KCG) was defined, which explained why 3-ring PAHs are more easily adsorbed by catkins than by airborne particles when their subcooled liquid vapor pressure is high (log PL > -1.73). The removal loading of atmospheric PAHs by catkins were estimated as 1.03 kg/year in the center city of Harbin, which may well explain the phenomenon that levels of gaseous and total (particle + gas) PAHs are relatively low in the months with catkins floating reported in peer-reviewed papers.
Collapse
Affiliation(s)
- Peng-Tuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, PR China
| | - Dong-Hai Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, PR China
| | - Zhi-Guo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, PR China
| | - Hong Wei
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, PR China; Hangzhou PuYu Technology Development Co., Ltd., Hangzhou 311300, PR China
| | - Fu-Jie Zhu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, PR China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, PR China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, PR China
| | - Jing-Lan Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, PR China
| | | | - Yu-Fei Li
- Northeast Forestry University, Harbin, PR China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, PR China.
| |
Collapse
|
5
|
Grant T, Lilley T, McCormack MC, Rathouz PJ, Peng R, Keet CA, Rule A, Davis M, Balcer-Whaley S, Newman M, Matsui EC. Indoor environmental exposures and obstructive lung disease phenotypes among children with asthma living in poor urban neighborhoods. J Allergy Clin Immunol 2023; 151:716-722.e8. [PMID: 36395986 PMCID: PMC9992008 DOI: 10.1016/j.jaci.2022.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Air trapping is an obstructive phenotype that has been associated with more severe and unstable asthma in children. Air trapping has been defined using pre- and postbronchodilator spirometry. The causes of air trapping are not completely understood. It is possible that environmental exposures could be implicated in air trapping in children with asthma. OBJECTIVE We investigated the association between indoor exposures and air trapping in urban children with asthma. METHODS Children with asthma aged 5 to 17 years living in Baltimore and enrolled onto the Environmental Control as Add-on Therapy for Childhood Asthma study were evaluated for air trapping using spirometry. Aeroallergen sensitization was assessed at baseline, and spirometry was performed at 0, 3, and 6 months. Air trapping was defined as an FVC z score of less than -1.64 or a change in FVC with bronchodilation of ≥10% predicted. Logistic normal random effects models were used to evaluate associations of air trapping and indoor exposures. RESULTS Airborne and bedroom floor mouse allergen concentrations were associated with air trapping but not airflow limitation (odds ratio 1.19, 95% confidence interval 1.02-1.37, P = .02 per 2-fold increase in airborne mouse allergen; odds ratio 1.23, 95% confidence interval 1.07-1.41, P = .003 per 2-fold increase in bedroom floor mouse allergen). Other indoor exposures (cockroach, cat, dog, dust mite, particulate matter, and nicotine) were not associated with air trapping or airflow limitation. CONCLUSION Mouse allergen exposure, but not other indoor exposure, was associated with air trapping in urban children with asthma.
Collapse
Affiliation(s)
- Torie Grant
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Travis Lilley
- Department of Population Health, Dell Medical School at UT Austin, Austin, Tex
| | - Meredith C McCormack
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Paul J Rathouz
- Department of Population Health, Dell Medical School at UT Austin, Austin, Tex
| | - Roger Peng
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | - Corinne A Keet
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Pubilc Health, Baltimore, Md
| | - Meghan Davis
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Pubilc Health, Baltimore, Md
| | - Susan Balcer-Whaley
- Department of Population Health, Dell Medical School at UT Austin, Austin, Tex
| | - Michelle Newman
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Md
| | - Elizabeth C Matsui
- Department of Population Health, Dell Medical School at UT Austin, Austin, Tex; Department of Pediatrics, Dell Medical School at UT Austin, Austin, Tex.
| |
Collapse
|
6
|
Zhang S, Liang Z, Wang X, Ye Z, Li G, An T. Bioaerosols in an industrial park and the adjacent houses: Dispersal between indoor/outdoor, the impact of air purifier, and health risk reduction. ENVIRONMENT INTERNATIONAL 2023; 172:107778. [PMID: 36724713 DOI: 10.1016/j.envint.2023.107778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Inhaling airborne pathogens may cause severe epidemics showing huge threats to indoor dwellings residents. The ventilation, environmental parameters, and human activities would affect the abundance and pathogenicity of bioaerosols in indoor. However, people know little about the indoor airborne microbes especially pathogens near the industrial park polluted with organics and heavy metals. Herein, the indoor bioaerosols' community composition, source and influencing factors near an electronic waste (e-waste) industrial park were investigated. Results showed that the average bioaerosol level in the morning was lower than evening. Bioaerosol concentration and activity in indoor (1936 CFU/m3 and 7.62 × 105 ng/m3 sodium fluorescein in average) were lower than the industrial park (4043 CFU/m3 and 7.77 × 105 ng/m3 sodium fluorescein), and higher microbial viability may be caused by other pollutants generated during e-waste dismantling process. Fluorescent biological aerosol particles occupied 17.6%-23.7% of total particles, indicating that most particles were non-biological. Bacterial communities were richer and more diverse than fungi. Furthermore, Bacillus and Cladosporium were the dominant indoor pathogens, and pathogenic fungi were more influenced by environmental factors than bacteria. SourceTracker analysis indicates that outdoor was the main source of indoor bioaerosols. The hazard quotient (<1) of airborne microbes through inhalation was negligible, but long-term exposure to pathogens could be harmful. Air purifiers could effectively remove the airborne fungi and spheroid bacteria than cylindrical bacteria, but open doors and windows would reduce the purification efficiency. This study is great important for risk assessments and control of indoor bioaerosols near industrial park.
Collapse
Affiliation(s)
- Simeng Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolong Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zikai Ye
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Yu S, Zhou X, Hu P, Chen H, Shen F, Yu C, Meng H, Zhang Y, Wu Y. Inhalable particle-bound marine biotoxins in a coastal atmosphere: Concentration levels, influencing factors and health risks. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128925. [PMID: 35460997 DOI: 10.1016/j.jhazmat.2022.128925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Characterizing marine biotoxins (MBs) composition in coastal aerosol particles has become essential to tracking sources of atmospheric contaminants and assessing human inhalable exposure risks to air particles. Here, coastal aerosol particles were collected over an almost 3-year period for the analysis of eight representative MBs, including brevetoxin (BTX), okadaic acid (OA), pectenotoxin-2 (PTX-2), domoic acid (DA), tetrodotoxin (TTX), saxitoxin (STX), ciguatoxin (CTX) and ω-Conotoxin. Our data showed that the levels of inhalable airborne marine biotoxins (AMBs) varied greatly among the subcategories and over time. Both in daytime and nighttime, a predominance of coarse-mode AMB particles was found for all the target AMBs. Based on the experimental data, we speculate that an ambient AMB might have multiple sources/production pathways, which include air-sea aerosol production and direct generation and release from toxigenic microalgae/bacteria suspended in surface seawater or air, and different sources may make different contribution. Regardless of the subcategory, the highest deposition efficiency of an individual AMB was found in the head airway region, followed by the alveolar and tracheobronchial regions. This study provides new information about inhalable MBs in the coastal atmosphere. The coexistence of various particle-bound MBs raises concerns about potential health risks from exposure to coastal air particles.
Collapse
Affiliation(s)
- Song Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xuedong Zhou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Peiwen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haoxuan Chen
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Fangxia Shen
- School of Space and Environment, Beihang University, Beijing 100083, China
| | - Chenglin Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - He Meng
- Qingdao Eco-Environment Monitoring Center of Shandong Province, Qingdao 266003, China
| | - Yong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Yan Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
8
|
Vuerich R, Martinelli V, Vodret S, Bertani I, Carletti T, Zentilin L, Venturi V, Marcello A, Zacchigna S. A new laser device for ultra-rapid and sustainable aerosol sterilization. ENVIRONMENT INTERNATIONAL 2022; 164:107272. [PMID: 35526297 PMCID: PMC9060718 DOI: 10.1016/j.envint.2022.107272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
The current COVID-19 pandemic has highlighted the importance of aerosol-based transmission of human pathogens; this therefore calls for novel medical devices which are able to sterilize contaminated aerosols. Here we describe a new laser device able to sterilize droplets containing either viruses or bacteria. Using engineered viral particles, we determined the 10,600 nm wavelength as the most efficient and exploitable laser source to be manufactured in a commercial device. Given the lack of existing working models to reproduce a human aerosol containing living microbial particles, we developed a new system mimicking human droplet formation and preserving bacterial and viral viability. This evidenced the efficacy of 10,600 nm laser light to kill two aerosol transmitted human pathogens, Legionella pneumophila and SARS-CoV-2. The minimal exposure time of <15 ms was required for the inactivation of over 99% pathogens in the aerosol; this is a key element in the design of a device that is safe and can be used in preventing inter-individual transmission. This represents a major advantage over existing devices, which mainly aim at either purifying incoming air by filters or sterilizing solid surfaces, which are not the major transmission routes for airborne communicable diseases.
Collapse
Affiliation(s)
- Roman Vuerich
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Simone Vodret
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Iris Bertani
- Laboratory: Bacteriology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Tea Carletti
- Molecular Virology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Vittorio Venturi
- Laboratory: Bacteriology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Alessandro Marcello
- Molecular Virology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy. https://www.icgeb.org/cardiovascular-biology/
| |
Collapse
|
9
|
Li L, Zheng Y, Ma S. Indoor Air Purification and Residents' Self-Rated Health: Evidence from the China Health and Nutrition Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6316. [PMID: 35627853 PMCID: PMC9141498 DOI: 10.3390/ijerph19106316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022]
Abstract
Indoor air pollution is injurious to human health, even worse than outdoor air pollution. However, there is a lack of empirical evidence using large samples in developing countries regarding whether indoor air purification can improve human health by reducing indoor air pollutants. Using the data from the China Health and Nutrition Survey in 2015, this study analyzes the relationship between indoor air purification and residents' self-rated health. We apply the generalized ordered logit model and find that indoor air purification has a significantly positive effect on residents' self-rated health. This positive effect is limited to improving the probability of residents' health level being rated "good", and there is no significant movement between the two levels of "bad" and "fair". The results also show that, as an important source of indoor air pollutants, solid fuels used in cooking significantly reduced residents' self-rated health level. Additional results show the heterogeneity of the relationship between indoor air purification and resident health among groups with different characteristics. This study provides empirical evidence for further optimizing the indoor air environment.
Collapse
Affiliation(s)
| | - Yilin Zheng
- College of Management and Economics, Tianjin University, Tianjin 300072, China; (L.L.); (S.M.)
| | | |
Collapse
|
10
|
Choi D, Choi M, Jeong H, Heo J, Kim T, Park S, Jin Y, Lee S, Hong J. Co-existing "spear-and-shield" air filter: Anchoring proteinaceous pathogen and self-sterilized nanocoating for combating viral pandemic. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 426:130763. [PMID: 34131388 PMCID: PMC8192840 DOI: 10.1016/j.cej.2021.130763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/23/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Infectious pollutants bioaerosols can threaten human public health. In particular, the indoor environment provides a unique exposure situation to induce infection through airborne transmission like SARS-CoV-2. To prevent the infection from spreading, personal protective equipment or indoor air purification is necessary. However, it has been discovered that the conventional filter can become contaminated by pathogen-containing aerosols, meaning that advanced filtering and self-sterilization systems are required. Here, we fabricate a multilayered nanocoating around the fabric using laponite (LAP) with Cu2+ ions (LAP-Cu2+ nanocoating) two contradictory functions in one system: trapping proteinaceous pathogens and antibacterial effect. Due to the strong LAP-protein interaction, albumin and spike protein (S-protein) are trapped into the fabric when proteins are sprayed using a nebulizer. The protein-blocking performance of the nanocoated fabric is 9.55-fold higher than bare fabric. These trapping capacities are retained after rinsing and repeated adsorption cycles, showing reproducibility for air filtration. Even though the protein-binding occurred, the LAP-Cu2+ fabric indicates antibacterial effect. LAP-Cu2+ fabric has an equivalent air and water transmittance rate to that of bare fabric with a stability under physiological environment. Therefore, given its excellent "Spear-and-shield" functions, the proposed LAP-Cu2+ fabric shows great potential for use in filter and masks during the viral pandemic.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyejoong Jeong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Taihyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Youngho Jin
- Agency for Defense Development, Daejeon 34186, Republic of Korea
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-ang University, Seoul 06974, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Riederer AM, Krenz JE, Tchong-French MI, Torres E, Perez A, Younglove LR, Jansen KL, Hardie DC, Farquhar SA, Sampson PD, Metwali N, Thorne PS, Karr CJ. Effectiveness of portable HEPA air cleaners on reducing indoor endotoxin, PM 10, and coarse particulate matter in an agricultural cohort of children with asthma: A randomized intervention trial. INDOOR AIR 2021; 31:1926-1939. [PMID: 34288127 PMCID: PMC8577577 DOI: 10.1111/ina.12858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/05/2021] [Accepted: 05/02/2021] [Indexed: 06/13/2023]
Abstract
We conducted a randomized trial of portable HEPA air cleaners in the homes of children age 6-12 years with asthma in the Yakima Valley, Washington. All families received asthma education while intervention families also received two HEPA cleaners (child's bedroom, living room). We collected 14-day integrated samples of endotoxin in settled dust and PM10 and PM10-2.5 in the air of the children's bedrooms at baseline and one-year follow-up, and used linear regression to compare follow-up levels, adjusting for baseline. Seventy-one families (36 HEPA, 35 control) completed the study. Baseline geometric mean (GSD) endotoxin loadings were 1565 (6.3) EU/m2 and 2110 (4.9) EU/m2 , respectively, in HEPA vs. control homes while PM10 and PM10-2.5 were 22.5 (1.9) μg/m3 and 9.5 (2.9) μg/m3 , respectively, in HEPA homes, and 19.8 (1.8) μg/m3 and 7.7 (2.0) μg/m3 , respectively, in control homes. At follow-up, HEPA families had 46% lower (95% CI, 31%-57%) PM10 on average than control families, consistent with prior studies. In the best-fit heterogeneous slopes model, HEPA families had 49% (95% CI, 6%-110%) and 89% lower (95% CI, 28%-177%) PM10-2.5 at follow-up, respectively, at 50th and 75th percentile baseline concentrations. Endotoxin loadings did not differ significantly at follow-up (4% lower, HEPA homes; 95% CI, -87% to 50%).
Collapse
Affiliation(s)
- Anne M. Riederer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jennifer E. Krenz
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Maria I. Tchong-French
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth Torres
- Northwest Communities Education Center, Radio KDNA, Granger, WA, USA
| | - Adriana Perez
- Yakima Valley Farm Workers Clinic, Toppenish, WA, USA
| | - Lisa R. Younglove
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Karen L. Jansen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - David C. Hardie
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Stephanie A. Farquhar
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Paul D. Sampson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Nervana Metwali
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Peter S. Thorne
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|