1
|
Gontijo JB, Paula FS, Bieluczyk W, França AG, Navroski D, Mandro JA, Venturini AM, Asselta FO, Mendes LW, Moura JMS, Moreira MZ, Nüsslein K, Bohannan BJM, Bodelier PLE, Rodrigues JLM, Tsai SM. Methane-cycling microbial communities from Amazon floodplains and upland forests respond differently to simulated climate change scenarios. ENVIRONMENTAL MICROBIOME 2024; 19:48. [PMID: 39020395 PMCID: PMC11256501 DOI: 10.1186/s40793-024-00596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Seasonal floodplains in the Amazon basin are important sources of methane (CH4), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH4 cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.e., Amazonas and Tapajós rivers) and one upland forest. We employed a two-factorial experimental design comprising flooding (with non-flooded control) and temperature (at 27 °C and 30 °C, representing a 3 °C increase) as variables. We assessed prokaryotic community dynamics over 30 days using 16S rRNA gene sequencing and qPCR. These data were integrated with chemical properties, CH4 fluxes, and isotopic values and signatures. In the floodplains, temperature changes did not significantly affect the overall microbial composition and CH4 fluxes. CH4 emissions and uptake in response to flooding and non-flooding conditions, respectively, were observed in the floodplain soils. By contrast, in the upland forest, the higher temperature caused a sink-to-source shift under flooding conditions and reduced CH4 sink capability under dry conditions. The upland soil microbial communities also changed in response to increased temperature, with a higher percentage of specialist microbes observed. Floodplains showed higher total and relative abundances of methanogenic and methanotrophic microbes compared to forest soils. Isotopic data from some flooded samples from the Amazonas river floodplain indicated CH4 oxidation metabolism. This floodplain also showed a high relative abundance of aerobic and anaerobic CH4 oxidizing Bacteria and Archaea. Taken together, our data indicate that CH4 cycle dynamics and microbial communities in Amazonian floodplain and upland forest soils may respond differently to climate change effects. We also highlight the potential role of CH4 oxidation pathways in mitigating CH4 emissions in Amazonian floodplains.
Collapse
Affiliation(s)
- Júlia B Gontijo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil.
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA.
| | - Fabiana S Paula
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Wanderlei Bieluczyk
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Aline G França
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Deisi Navroski
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Jéssica A Mandro
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | - Fernanda O Asselta
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Lucas W Mendes
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - José M S Moura
- Instituto de Formação Interdisciplinar e Intercultural, Universidade Federal do Oeste do Pará, Santarém, PA, Brazil
| | - Marcelo Z Moreira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Brendan J M Bohannan
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Paul L E Bodelier
- Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, GE, The Netherlands
| | - Jorge L Mazza Rodrigues
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Siu M Tsai
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
2
|
Xiong J, Wang G, Sun X, Hu Z, Li Y, Sun J, Zhang W, Sun S. Effects of litter and root inputs on soil CH 4 uptake rates and associated microbial abundances in natural temperature subalpine forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168730. [PMID: 38007118 DOI: 10.1016/j.scitotenv.2023.168730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Climate change altered the quantities of aboveground plant litter and root inputs, but the effects on soil CH4 uptake rates and underlying mechanisms remain unclear. To investigate these factors, a three-year detritus input and removal treatment (DIRT) study including six treatments (namely, CK, control; NL, litter removal; DL, double litter; NR, root exclusion; NRNL, root exclusion plus litter removal; and NRDL, root exclusion plus double litter) was conducted in broadleaf and coniferous forest subalpine forest ecosystems. The results showed that both the subalpine forest soils acted as sink for atmospheric CH4 across all treatments, while the broadleaf forest had consistently higher CH4 uptake rates than the coniferous forest. Based on the annual mean values, root exclusion (NR, NRNL and NRDL) significantly decreased soil CH4 uptake rates by 35.9 %, 31.0 % and 43.4 % in the broadleaf forest and 36.7 %, 31.9 % and 40.6 % in the coniferous forest compared with CK treatments, respectively. Meanwhile, the mean soil CH4 uptake rates were significantly reduced by 23.6 % and 17.3 % in the broadleaf forest and the coniferous forest under the DL treatments, respectively; nevertheless, the NL treatment significantly increased soil CH4 uptake rates by 19.68 % and 14.4 %, respectively. The results clearly demonstrated that root exclusion exerted a greater influence on soil CH4 uptake rates than plant litter manipulations. Correlation and redundancy analysis (RDA) revealed that the separation of root exclusion treatments from aboveground plant litter manipulations was based on higher soil water content, NH4+-N and NO3--N concentrations, and lower DOC (dissolved organic carbon) concentrations and methanotroph pmoA gene abundance. The results suggest that future alterations in aboveground plant litter and root input, particularly a reduction in root input, can exert a stronger influence on regulating soil CH4 uptake than aboveground litter manipulations in subalpine forests with cold and humid climatic conditions in response to future climate scenarios.
Collapse
Affiliation(s)
- Jia Xiong
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Genxu Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Xiangyang Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Zhaoyong Hu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Yang Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Juying Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Zhang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Shouqin Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Bieluczyk W, Asselta FO, Navroski D, Gontijo JB, Venturini AM, Mendes LW, Simon CP, Camargo PBD, Tadini AM, Martin-Neto L, Bendassolli JA, Rodrigues RR, van der Putten WH, Tsai SM. Linking above and belowground carbon sequestration, soil organic matter properties, and soil health in Brazilian Atlantic Forest restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118573. [PMID: 37459811 DOI: 10.1016/j.jenvman.2023.118573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 09/17/2023]
Abstract
Forest restoration mitigates climate change by removing CO2 and storing C in terrestrial ecosystems. However, incomplete information on C storage in restored tropical forests often fails to capture the ecosystem's holistic C dynamics. This study provides an integrated assessment of C storage in above to belowground subsystems, its consequences for greenhouse gas (GHG) fluxes, and the quantity, quality, and origin of soil organic matter (SOM) in restored Atlantic forests in Brazil. Relations between SOM properties and soil health indicators were also explored. We examined two restorations using tree planting ('active restoration'): an 8-year-old forest with green manure and native trees planted in two rounds, and a 15-year-old forest with native-planted trees in one round without green manure. Restorations were compared to reformed pasture and primary forest sites. We measured C storage in soil layers (0-10, 10-20, and 20-30 cm), litter, and plants. GHG emissions were assessed using CH4 and CO2 fluxes. SOM quantity was evaluated using C and N, quality using humification index (HLIFS), and origin using δ13C and δ15N. Nine soil health indicators were interrelated with SOM attributes. The primary forest presented the highest C stocks (107.7 Mg C ha-1), followed by 15- and 8-year-old restorations and pasture with 69.8, 55.5, and 41.8 Mg C ha-1, respectively. Soil C stocks from restorations and pasture were 20% lower than primary forest. However, 8- and 15-year-old restorations stored 12.3 and 28.3 Mg ha-1 more aboveground C than pasture. The younger forest had δ13C and δ15N values of 2.1 and 1.7‰, respectively, lower than the 15-year-old forest, indicating more C derived from C3 plants and biological N fixation. Both restorations and pasture had at least 34% higher HLIFS in deeper soil layers (10-30 cm) than primary forest, indicating a lack of labile SOM. Native and 15-year-old forests exhibited higher soil methane influx (141.1 and 61.9 μg m-2 h-1). Forests outperformed pasture in most soil health indicators, with 69% of their variance explained by SOM properties. However, SOM quantity and quality regeneration in both restorations approached the pristine forest state only in the top 10 cm layer, while deeper soil retained agricultural degradation legacies. In conclusion, active restoration of the Atlantic Forest is a superior approach compared to pasture reform for GHG mitigation. Nonetheless, the development of restoration techniques to facilitate labile C input into deeper soil layers (>10 cm) is needed to further improve soil multifunctionality and long-term C storage.
Collapse
Affiliation(s)
- Wanderlei Bieluczyk
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil; University of São Paulo, Center for Nuclear Energy in Agriculture, Isotopic Ecology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Fernanda Ometto Asselta
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Deisi Navroski
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Júlia Brandão Gontijo
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Andressa Monteiro Venturini
- Princeton Institute for International and Regional Studies, Princeton University, Princeton, NJ, USA; Department of Biology, Stanford University, Stanford, CA, USA.
| | - Lucas William Mendes
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Carla Penha Simon
- University of São Paulo, Center for Nuclear Energy in Agriculture, Isotopic Ecology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Plínio Barbosa de Camargo
- University of São Paulo, Center for Nuclear Energy in Agriculture, Isotopic Ecology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Amanda Maria Tadini
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, 1452 XV de Novembro Street, São Carlos, SP, 13560-970, Brazil.
| | - Ladislau Martin-Neto
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, 1452 XV de Novembro Street, São Carlos, SP, 13560-970, Brazil.
| | - José Albertino Bendassolli
- University of São Paulo, Center for Nuclear Energy in Agriculture, Stable Isotope Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Ricardo Ribeiro Rodrigues
- University of São Paulo, "Luiz de Queiroz" College of Agriculture, Laboratory of Ecology and Forest Restoration, 11 Pádua Dias Avenue, Piracicaba, SP, 13418-900, Brazil.
| | - Wim H van der Putten
- Netherlands Institute of Ecology, NIOO-KNAW, Department of Terrestrial Ecology, 6708, PB, Wageningen, Netherlands; Laboratory of Nematology, Wageningen University, P.O. Box 8123, 6700, ES, Wageningen, the Netherlands.
| | - Siu Mui Tsai
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| |
Collapse
|
4
|
Obregon Alvarez D, Fonseca de Souza L, Mendes LW, de Moraes MT, Tosi M, Venturini AM, Meyer KM, Barbosa de Camargo P, Bohannan BJM, Mazza Rodrigues JL, Dunfield KE, Tsai SM. Shifts in functional traits and interactions patterns of soil methane-cycling communities following forest-to-pasture conversion in the Amazon Basin. Mol Ecol 2023. [PMID: 36896778 DOI: 10.1111/mec.16912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
Deforestation threatens the integrity of the Amazon biome and the ecosystem services it provides, including greenhouse gas mitigation. Forest-to-pasture conversion has been shown to alter the flux of methane gas (CH4 ) in Amazonian soils, driving a switch from acting as a sink to a source of atmospheric CH4 . This study aimed to better understand this phenomenon by investigating soil microbial metagenomes, focusing on the taxonomic and functional structure of methane-cycling communities. Metagenomic data from forest and pasture soils were combined with measurements of in situ CH4 fluxes and soil edaphic factors and analysed using multivariate statistical approaches. We found a significantly higher abundance and diversity of methanogens in pasture soils. As inferred by co-occurrence networks, these microorganisms seem to be less interconnected within the soil microbiota in pasture soils. Metabolic traits were also different between land uses, with increased hydrogenotrophic and methylotrophic pathways of methanogenesis in pasture soils. Land-use change also induced shifts in taxonomic and functional traits of methanotrophs, with bacteria harbouring genes encoding the soluble form of methane monooxygenase enzyme (sMMO) depleted in pasture soils. Redundancy analysis and multimodel inference revealed that the shift in methane-cycling communities was associated with high pH, organic matter, soil porosity and micronutrients in pasture soils. These results comprehensively characterize the effect of forest-to-pasture conversion on the microbial communities driving the methane-cycling microorganisms in the Amazon rainforest, which will contribute to the efforts to preserve this important biome.
Collapse
Affiliation(s)
- Dasiel Obregon Alvarez
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | | | - Micaela Tosi
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | - Kyle M Meyer
- Department of Integrative Biology, University of California-Berkeley, Berkeley, California, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | | | | | - Jorge L Mazza Rodrigues
- Department of Land, Air, and Water Resources, University of California-Davis, Davis, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kari E Dunfield
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Siu Mui Tsai
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
5
|
Fonseca de Souza L, Alvarez DO, Domeignoz-Horta LA, Gomes FV, de Souza Almeida C, Merloti LF, Mendes LW, Andreote FD, Bohannan BJM, Mazza Rodrigues JL, Nüsslein K, Tsai SM. Maintaining grass coverage increases methane uptake in Amazonian pastures, with a reduction of methanogenic archaea in the rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156225. [PMID: 35623507 DOI: 10.1016/j.scitotenv.2022.156225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Cattle ranching is the largest driver of deforestation in the Brazilian Amazon. The rainforest-to-pasture conversion affects the methane cycle in upland soils, changing it from sink to source of atmospheric methane. However, it remains unknown if management practices could reduce the impact of land-use on methane cycling. In this work, we evaluated how pasture management can regulate the soil methane cycle either by maintaining continuous grass coverage on pasture soils, or by liming the soil to amend acidity. Methane fluxes from forest and pasture soils were evaluated in moisture-controlled greenhouse experiments with and without grass cover (Urochloa brizantha cv. Marandu) or liming. We also assessed changes in the soil microbial community structure of both bare (bulk) and rhizospheric pasture soils through high throughput sequencing of the 16S rRNA gene, and quantified the methane cycling microbiota by their respective marker genes related to methane generation (mcrA) or oxidation (pmoA). The experiments used soils from eastern and western Amazonia, and concurrent field studies allowed us to confirm greenhouse data. The presence of a grass cover not only increased methane uptake by up to 35% in pasture soils, but also reduced the abundance of the methane-producing community. In the grass rhizosphere this reduction was up to 10-fold. Methane-producing archaea belonged to the genera Methanosarcina sp., Methanocella sp., Methanobacterium sp., and Rice Cluster I. Further, we showed that soil liming to increasing pH compromised the capacity of forest and pasture soils to be a sink for methane, and instead converted formerly methane-consuming forest soils to become methane sources in only 40-80 days. Liming reduced the relative abundance of Beijerinckiacea family in forest soils, which account for many known methanotrophs. Our results demonstrate that pasture management that maintains grass coverage can mitigate soil methane emissions, compared to bare (bulk) pasture soil.
Collapse
Affiliation(s)
- Leandro Fonseca de Souza
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil; Department of Microbiology, University of Massachusetts, Amherst, MA, USA.
| | - Dasiel Obregon Alvarez
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil; Applied Soil Ecology Lab, School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Luiz A Domeignoz-Horta
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Fabio Vitorino Gomes
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| | | | - Luis Fernando Merloti
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| | | | | | | | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Siu Mui Tsai
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
6
|
Venturini AM, Dias NMS, Gontijo JB, Yoshiura CA, Paula FS, Meyer KM, Nakamura FM, da França AG, Borges CD, Barlow J, Berenguer E, Nüsslein K, Rodrigues JLM, Bohannan BJM, Tsai SM. Increased soil moisture intensifies the impacts of forest-to-pasture conversion on methane emissions and methane-cycling communities in the Eastern Amazon. ENVIRONMENTAL RESEARCH 2022; 212:113139. [PMID: 35337832 DOI: 10.1016/j.envres.2022.113139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Climatic changes are altering precipitation patterns in the Amazon and may influence soil methane (CH4) fluxes due to the differential responses of methanogenic and methanotrophic microorganisms. However, it remains unclear if these climate feedbacks can amplify land-use-related impacts on the CH4 cycle. To better predict the responses of soil CH4-cycling microorganisms and emissions under altered moisture levels in the Eastern Brazilian Amazon, we performed a 30-day microcosm experiment manipulating the moisture content (original moisture; 60%, 80%, and 100% of field capacity - FC) of forest and pasture soils. Gas samples were collected periodically for gas chromatography analysis, and methanogenic archaeal and methanotrophic bacterial communities were assessed using quantitative PCR and metagenomics. Positive and negative daily CH4 fluxes were observed for forest and pasture, indicating that these soils can act as both CH4 sources and sinks. Cumulative emissions and the abundance of methanogenesis-related genes and taxonomic groups were affected by land use, moisture, and their interaction. Pasture soils at 100% FC had the highest abundance of methanogens and CH4 emissions, 22 times higher than forest soils under the same treatment. Higher ratios of methanogens to methanotrophs were found in pasture than in forest soils, even at field capacity conditions. Land use and moisture were significant factors influencing the composition of methanogenic and methanotrophic communities. The diversity and evenness of methanogens did not change throughout the experiment. In contrast, methanotrophs exhibited the highest diversity and evenness in pasture soils at 100% FC. Taken together, our results suggest that increased moisture exacerbates soil CH4 emissions and microbial responses driven by land-use change in the Amazon. This is the first report on the microbial CH4 cycle in Amazonian upland soils that combined one-month gas measurements with advanced molecular methods.
Collapse
Affiliation(s)
- Andressa M Venturini
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil; Princeton Institute for International and Regional Studies, Princeton University, Princeton, NJ, 08544, USA.
| | - Naissa M S Dias
- Environmental Biogeochemistry Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Júlia B Gontijo
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Caio A Yoshiura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Fabiana S Paula
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil; Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, São Paulo, SP, 05508-120, Brazil
| | - Kyle M Meyer
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA; Department of Integrative Biology, University of California - Berkeley, Berkeley, CA, 94720, USA
| | - Fernanda M Nakamura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Aline G da França
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Clovis D Borges
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Erika Berenguer
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK; Environmental Change Institute, University of Oxford, Oxford, OX1 3QY, UK
| | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jorge L M Rodrigues
- Department of Land, Air, and Water Resources, University of California - Davis, Davis, CA, 95616, USA
| | - Brendan J M Bohannan
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Siu M Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| |
Collapse
|
7
|
Venturini AM, Gontijo JB, Mandro JA, Paula FS, Yoshiura CA, da França AG, Tsai SM. Genome-resolved metagenomics reveals novel archaeal and bacterial genomes from Amazonian forest and pasture soils. Microb Genom 2022; 8. [PMID: 35894927 PMCID: PMC9455692 DOI: 10.1099/mgen.0.000853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Amazonian soil microbial communities are known to be affected by the forest-to-pasture conversion, but the identity and metabolic potential of most of their organisms remain poorly characterized. To contribute to the understanding of these communities, here we describe metagenome-assembled genomes (MAGs) recovered from 12 forest and pasture soil metagenomes of the Brazilian Eastern Amazon. We obtained 11 forest and 30 pasture MAGs (≥50% of completeness and ≤10 % of contamination), distributed among two archaeal and 11 bacterial phyla. The taxonomic classification results suggest that most MAGs may represent potential novel microbial taxa. MAGs selected for further evaluation included members of Acidobacteriota, Actinobacteriota, Desulfobacterota_B, Desulfobacterota_F, Dormibacterota, Eremiobacterota, Halobacteriota, Proteobacteria, and Thermoproteota, thus revealing their roles in carbohydrate degradation and mercury detoxification as well as in the sulphur, nitrogen, and methane cycles. A methane-producing Archaea of the genus Methanosarcina was almost exclusively recovered from pasture soils, which can be linked to a sink-to-source shift after the forest-to-pasture conversion. The novel MAGs constitute an important resource to help us unravel the yet-unknown microbial diversity in Amazonian soils and its functional potential and, consequently, the responses of these microorganisms to land-use change.
Collapse
Affiliation(s)
- Andressa M Venturini
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.,Princeton Institute for International and Regional Studies, Princeton University, Princeton, NJ, USA
| | - Júlia B Gontijo
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Jéssica A Mandro
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Fabiana S Paula
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.,Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Caio A Yoshiura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Aline G da França
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Siu M Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
8
|
Zhou J, Holmes DE, Tang HY, Lovley DR. Correlation of Key Physiological Properties of Methanosarcina Isolates with Environment of Origin. Appl Environ Microbiol 2021; 87:e0073121. [PMID: 33931421 PMCID: PMC8316034 DOI: 10.1128/aem.00731-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
It is known that the physiology of Methanosarcina species can differ significantly, but the ecological impact of these differences is unclear. We recovered two strains of Methanosarcina from two different ecosystems with a similar enrichment and isolation method. Both strains had the same ability to metabolize organic substrates and participate in direct interspecies electron transfer but also had major physiological differences. Strain DH-1, which was isolated from an anaerobic digester, used H2 as an electron donor. Genome analysis indicated that it lacks an Rnf complex and conserves energy from acetate metabolism via intracellular H2 cycling. In contrast, strain DH-2, a subsurface isolate, lacks hydrogenases required for H2 uptake and cycling and has an Rnf complex for energy conservation when growing on acetate. Further analysis of the genomes of previously described isolates, as well as phylogenetic and metagenomic data on uncultured Methanosarcina in anaerobic digesters and diverse soils and sediments, revealed a physiological dichotomy that corresponded with environment of origin. The physiology of type I Methanosarcina revolves around H2 production and consumption. In contrast, type II Methanosarcina species eschew H2 and have genes for an Rnf complex and the multiheme, membrane-bound c-type cytochrome MmcA, shown to be essential for extracellular electron transfer. The distribution of Methanosarcina species in diverse environments suggests that the type I H2-based physiology is well suited for high-energy environments, like anaerobic digesters, whereas type II Rnf/cytochrome-based physiology is an adaptation to the slower, steady-state carbon and electron fluxes common in organic-poor anaerobic soils and sediments. IMPORTANCE Biogenic methane is a significant greenhouse gas, and the conversion of organic wastes to methane is an important bioenergy process. Methanosarcina species play an important role in methane production in many methanogenic soils and sediments as well as anaerobic waste digesters. The studies reported here emphasize that the genus Methanosarcina is composed of two physiologically distinct groups. This is important to recognize when interpreting the role of Methanosarcina in methanogenic environments, especially regarding H2 metabolism. Furthermore, the finding that type I Methanosarcina species predominate in environments with high rates of carbon and electron flux and that type II Methanosarcina species predominate in lower-energy environments suggests that evaluating the relative abundance of type I and type II Methanosarcina may provide further insights into rates of carbon and electron flux in methanogenic environments.
Collapse
Affiliation(s)
- Jinjie Zhou
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Dawn E. Holmes
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
- Department of Physical and Biological Science, Western New England University, Springfield, Massachusetts, USA
| | - Hai-Yan Tang
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waster Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Derek R. Lovley
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
9
|
Gontijo JB, Paula FS, Venturini AM, Yoshiura CA, Borges CD, Moura JMS, Bohannan BJM, Nüsslein K, Rodrigues JLM, Tsai SM. Not just a methane source: Amazonian floodplain sediments harbour a high diversity of methanotrophs with different metabolic capabilities. Mol Ecol 2021; 30:2560-2572. [PMID: 33817881 DOI: 10.1111/mec.15912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
The Amazonian floodplain forests are dynamic ecosystems of great importance for the regional hydrological and biogeochemical cycles and function as a significant CH4 source contributing to the global carbon balance. Unique geochemical factors may drive the microbial community composition and, consequently, affect CH4 emissions across floodplain areas. Here, we report the in situ composition of CH4 cycling microbial communities in Amazonian floodplain sediments. We considered how abiotic factors may affect the microbial community composition and, more specifically, CH4 cycling groups. We collected sediment samples during wet and dry seasons from three different types of floodplain forests, along with upland forest soil samples, from the Eastern Amazon, Brazil. We used high-resolution sequencing of archaeal and bacterial 16S rRNA genes combined with real-time PCR to quantify Archaea and Bacteria, as well as key functional genes indicative of the presence of methanogenic (mcrA) and methanotrophic (pmoA) microorganisms. Methanogens were found to be present in high abundance in floodplain sediments, and they seem to resist the dramatic environmental changes between flooded and nonflooded conditions. Methanotrophs known to use different pathways to oxidise CH4 were detected, including anaerobic archaeal and bacterial taxa, indicating that a wide metabolic diversity may be harboured in this highly variable environment. The floodplain environmental variability, which is affected by the river origin, drives not only the sediment chemistry but also the composition of the microbial communities. These environmental changes seem also to affect the pools of methanotrophs occupying distinct niches. Understanding these shifts in the methanotrophic communities could improve our comprehension of the CH4 emissions in the region.
Collapse
Affiliation(s)
- Júlia B Gontijo
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Fabiana S Paula
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil.,Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Andressa M Venturini
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Caio A Yoshiura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Clovis D Borges
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - José Mauro S Moura
- Center for Interdisciplinary Formation, Federal University of Western Pará, Santarém, Brazil
| | - Brendan J M Bohannan
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Jorge L Mazza Rodrigues
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Siu M Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
10
|
Kroeger ME, Meredith LK, Meyer KM, Webster KD, de Camargo PB, de Souza LF, Tsai SM, van Haren J, Saleska S, Bohannan BJM, Rodrigues JLM, Berenguer E, Barlow J, Nüsslein K. Rainforest-to-pasture conversion stimulates soil methanogenesis across the Brazilian Amazon. THE ISME JOURNAL 2021; 15:658-672. [PMID: 33082572 PMCID: PMC8027882 DOI: 10.1038/s41396-020-00804-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 01/30/2023]
Abstract
The Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink threatened by agricultural conversion. Rainforest-to-pasture conversion stimulates the release of methane, a potent greenhouse gas. The biotic methane cycle is driven by microorganisms; therefore, this study focused on active methane-cycling microorganisms and their functions across land-use types. We collected intact soil cores from three land use types (primary rainforest, pasture, and secondary rainforest) of two geographically distinct areas of the Brazilian Amazon (Santarém, Pará and Ariquemes, Rondônia) and performed DNA stable-isotope probing coupled with metagenomics to identify the active methanotrophs and methanogens. At both locations, we observed a significant change in the composition of the isotope-labeled methane-cycling microbial community across land use types, specifically an increase in the abundance and diversity of active methanogens in pastures. We conclude that a significant increase in the abundance and activity of methanogens in pasture soils could drive increased soil methane emissions. Furthermore, we found that secondary rainforests had decreased methanogenic activity similar to primary rainforests, and thus a potential to recover as methane sinks, making it conceivable for forest restoration to offset greenhouse gas emissions in the tropics. These findings are critical for informing land management practices and global tropical rainforest conservation.
Collapse
Affiliation(s)
- Marie E. Kroeger
- grid.266683.f0000 0001 2184 9220Department of Microbiology, University of Massachusetts Amherst, Amherst, MA USA ,grid.148313.c0000 0004 0428 3079Present Address: Bioenergy and Biome Sciences, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Laura K. Meredith
- grid.134563.60000 0001 2168 186XSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XBiosphere 2, University of Arizona, Tucson, AZ USA
| | - Kyle M. Meyer
- grid.170202.60000 0004 1936 8008Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA ,grid.47840.3f0000 0001 2181 7878Department of Integrative Biology, University of California–Berkeley, Berkeley, CA USA
| | - Kevin D. Webster
- grid.423138.f0000 0004 0637 3991Planetary Science Institute, Tucson, AZ USA
| | - Plinio Barbosa de Camargo
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Leandro Fonseca de Souza
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Siu Mui Tsai
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Joost van Haren
- grid.134563.60000 0001 2168 186XBiosphere 2, University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XHonors College, University of Arizona, Tucson, AZ USA
| | - Scott Saleska
- grid.134563.60000 0001 2168 186XDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Brendan J. M. Bohannan
- grid.170202.60000 0004 1936 8008Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
| | - Jorge L. Mazza Rodrigues
- grid.27860.3b0000 0004 1936 9684Department of Land, Air and Water Resources, University of California, Davis, CA USA
| | - Erika Berenguer
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, UK ,grid.4991.50000 0004 1936 8948Environmental Change Institute, University of Oxford, Oxford, UK
| | - Jos Barlow
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Klaus Nüsslein
- grid.266683.f0000 0001 2184 9220Department of Microbiology, University of Massachusetts Amherst, Amherst, MA USA
| |
Collapse
|