1
|
Wu S, Li K, Diao T, Sun Y, Sun T, Wang C. Influence of continuous fertilization on heavy metals accumulation and microorganism communities in greenhouse soils under 22 years of long-term manure organic fertilizer experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178294. [PMID: 39733578 DOI: 10.1016/j.scitotenv.2024.178294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
This study examined the impact of long-term manure organic fertilizer application (3, 8, 13, 18, and 22 years) on soil physicochemical properties, heavy metal (HM) accumulation, and microbial communities. Long-term manure application markedly elevated nutrient levels such as available N, P and K, and organic matter content in surface and soil profile. Total and DTPA-HM content in different vertical profiles increased with the application time. Fertilization increases the ratio of exchangeable fraction of Cd (2 %-17 %) and Zn (9 %-24 %). The risk assessment of HMs revealed that Cd posed the highest risk (moderate contamination level), followed by Cu, Zn, Pb, and Cr. Due to soil acidification, the time span exceeding the risk screening values of Cr, Cd, and Pb in agricultural land (GB 15618-2018) decreased 53.1, 41.2 and 411.8 years, respectiverly, and for risk intervention values of Cr, Cd, Cu, Pb and Zn, the time reduced to 318.5, 137.0, 71.1, 1029.5 and 19.1 years, respectiverly. Furthermore, manure application altered the composition and structure of the bacteria and fungi community. The abundance of Actinobacteria, Firmicutes, and Ascomycota increased, whereas Proteobacteria, Acidobacteria, and Basidiomycota was inhibited. SEM and RDA indicated that microbial communities were primarily influenced by pH, soil nutrients and HMs.
Collapse
Affiliation(s)
- Shihang Wu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Ke Li
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Tiantian Diao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| | - Tao Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Chao Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; College of Resources and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
2
|
Li P, Liu C, Zhang L, Liu Z, Fu Z, Fan G, Zhu Y, Zuo Y, Li L, Zhang L. Interactions between riverine sediment organic matter molecular structure and microbial community as regulated by heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136998. [PMID: 39724719 DOI: 10.1016/j.jhazmat.2024.136998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Heavy metals (HMs) exert a profound influence on soil carbon storage potential. The microbially-mediated association between HM content and carbon structure in riverine sediments remains unclear in lotic ecosystems. We investigated the spatiotemporal variations of HMs content, carbon content and microbial communities in riverine surface sediments, and further explored the chemical structure of sediment organic carbon (OCsed), the molecular composition of dissolved organic matter (DOM), and their interactions with microorganisms. The spatial-temporal variations in the chemical structure of OCsed, excluding O-alkyl C, were minimal, whereas the molecular composition of DOM underwent substantial fluctuations with seasons and sites. Significantly positive correlations were observed between Cu, Zn, Pb, and OCsed content. However, within a certain content range, HMs can promote the mineralization risk of OCsed, as reflected in their ability to increase the proportion of unstable O-alkyl C and decrease the proportion of stable carbon fractions (aromatic C, alkyl C, and phenolic C). Additionally, appropriate contents of HMs also improved the abundance and diversity of bacteria and fungi. Bacteria consumed more stable OC under HMs enrichment, whereas fungi increased the consumption of DOM fractions (condensed aromatic hydrocarbons and amino sugars). Our findings contribute to the understanding of the molecular mechanisms of carbon storage in HM-rich riverine sediments.
Collapse
Affiliation(s)
- Ping Li
- School of Environment and Climate, Jinan University, Guangzhou 510632, PR China
| | - Chun Liu
- Department of Ecology, Jinan University, Guangzhou 510632, PR China.
| | - Lijie Zhang
- School of Mechanical and Resource Engineering, Wuzhou University, Wuzhou 543002, PR China
| | - Zhaoling Liu
- Wuzhou Hydrological Center, Wuzhou 543000, PR China
| | - Zhiyong Fu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China
| | - Guanghui Fan
- School of Mechanical and Resource Engineering, Wuzhou University, Wuzhou 543002, PR China
| | - Yingjie Zhu
- Wuzhou Hydrological Center, Wuzhou 543000, PR China
| | - Yue Zuo
- Wuzhou Hydrological Center, Wuzhou 543000, PR China
| | - Liqiong Li
- School of Environment and Climate, Jinan University, Guangzhou 510632, PR China
| | - Lisha Zhang
- Department of Ecology, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
3
|
Choudhary S, Tiwari M, Poluri KM. A Biorefinery Approach Integrating Lipid and EPS Augmentation Along with Cr (III) Mitigation by Chlorella minutissima. Cells 2024; 13:2047. [PMID: 39768139 PMCID: PMC11674128 DOI: 10.3390/cells13242047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The quest for cleaner and sustainable energy sources is crucial, considering the current scenario of a steep rise in energy consumption and the fuel crisis, exacerbated by diminishing fossil fuel reserves and rising pollutants. In particular, the bioaccumulation of hazardous substances like trivalent chromium has not only disrupted the fragile equilibrium of the ecological system but also poses significant health hazards to humans. Microalgae emerged as a promising solution for achieving sustainability due to their ability to remediate contaminants and produce greener alternatives such as biofuels. This integrated approach provides an ambitious strategy to address global concerns pertaining to economic stability, environmental degradation, and the energy crisis. This study investigates the intricate defense mechanisms deployed by freshwater microalgae Chlorella minutissima in response to Cr (III) toxicity. The microalga achieved an impressive 92% removal efficiency with an IC50 value of 200 ppm, illustrating its extraordinary resilience towards chromium-induced stress. Furthermore, this research embarked on thorough explorations encompassing morphological, pigment-centric, and biochemical analyses, aimed at revealing the adaptive strategies associated with Cr (III) resilience, as well as the dynamics of carbon pool flow that contribute to enhanced lipid and extracellular polysaccharide (EPS) synthesis. The FAME profile of the biodiesel produced complies with the benchmark established by American and European fuel regulations, emphasizing its suitability as a high-quality vehicular fuel. Elevated levels of ROS, TBARS, and osmolytes (such as glycine-betaine), along with the increased activity of antioxidant enzymes (CAT, GR, and SOD), reveal the activation of robust defense mechanisms against oxidative stress caused by Cr (III). The finding of this investigation presents an effective framework for an algal-based biorefinery approach, integrating pollutant detoxification with the generation of vehicular-quality biodiesel and additional value-added compounds vital for achieving sustainability under the concept of a circular economy.
Collapse
Affiliation(s)
- Sonia Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (S.C.); (M.T.)
- Centre for Transportation System, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mansi Tiwari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (S.C.); (M.T.)
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (S.C.); (M.T.)
| |
Collapse
|
4
|
Cao Q, Zhao J, Ma W, Cui D, Zhang X, Liu J, Chen H. Heavy metals in homestead soil: Metal fraction contents, bioaccessibility, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135933. [PMID: 39366040 DOI: 10.1016/j.jhazmat.2024.135933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
Rapid urbanization in China has led to the disappearance of countless villages and the transformation of homestead land into cultivated land or grassland. The quality of homestead soil (HS) plays a pivotal role in land-use conversion and reuse strategies, so the current state of heavy metal pollution in HS deserves attention. This study determined the fraction contents, bioaccessibility, risks, and affecting factors of Hg, As, Cd, Pb, Cu, and Zn in HS by comparing them with soil in cultivated land (CS), grassland (GS), homestead-converted cultivated land (HCS), and homestead-converted grassland (HGS). Results demonstrate that the contents of the six metals exceed background values, especially for Cd and Hg, resulting in significant pollution and elevated ecological risk. Distinct from the dominant residual fraction of other metals, the extractable fraction of Cd shows the highest proportion, which also contributes most to the high values of the Risk Assessment Code and extreme pollution conditions in HS, GS, and CS. Moreover, pH shows predominantly negative relations with the effective available and potentially available contents, while the effects of organic carbon fractions are notably the opposite. Furthermore, CS and GS suggest higher non-carcinogenic and carcinogenic risks than in the converted soil. This study indicates that HS has a lower metal accumulation risk compared with cultivated land and grassland, and homestead conversion seems to restrict the bioaccessibility of metals in soil.
Collapse
Affiliation(s)
- Qingqing Cao
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250100, PR China
| | - Jiaqi Zhao
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250100, PR China
| | - Wen Ma
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, PR China
| | - Dongxu Cui
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250100, PR China.
| | - Xiaoping Zhang
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250100, PR China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Hao Chen
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250100, PR China.
| |
Collapse
|
5
|
Li Y, Wang K, Dötterl S, Xu J, Garland G, Liu X. The critical role of organic matter for cadmium-lead interactions in soil: Mechanisms and risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135123. [PMID: 38981228 DOI: 10.1016/j.jhazmat.2024.135123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Understanding the interaction mechanisms between complex heavy metals and soil components is a prerequisite for effectively forecasting the mobility and availability of contaminants in soils. Soil organic matter (SOM), with its diverse functional groups, has long been a focal point of research interest. In this study, four soils with manipulated levels of SOM, cadmium (Cd) and lead (Pb) were subjected to a 90-day incubation experiment. The competitive interactions between Cd and Pb in soils were investigated using Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray adsorption near-edge structure (XANES) analysis. Our results indicate that Pb competed with Cd for adsorption sites on the surface of SOM, particularly on carboxyl and hydroxyl functional groups. Approximately 22.6 % of Cd adsorption sites on humus were occupied by Pb. The use of sequentially extracted exchangeable heavy metals as indicators for environment risk assessments, considering variations in soil physico-chemical properties and synergistic or antagonistic effects between contaminants, provides a better estimation of metal bioavailability and its potential impacts. Integrating comprehensive contamination characterization of heavy metal interactions with the soil organic phase is an important advancement to assess the environmental risks of heavy metal dynamics in soil compared to individual contamination assessments.
Collapse
Affiliation(s)
- Yiren Li
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland
| | - Kai Wang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Sebastian Dötterl
- Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Gina Garland
- Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland.
| | - Xingmei Liu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Sun Y, Chen S, Jiang H, Qin B, Li D, Jia K, Wang C. Towards interpretable machine learning for observational quantification of soil heavy metal concentrations under environmental constraints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171931. [PMID: 38531447 DOI: 10.1016/j.scitotenv.2024.171931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Monitoring heavy metal concentrations in soils is central to assessing agricultural production safety. Satellite observations permit inferring concentrations from spectrum, thereby contributing to the prevention and control of soil heavy metal pollution. However, heavy metals exhibit weak spectral responses, particularly at low and medium concentrations, and are predominantly influenced by other soil components. Machine learning (ML)-driven modelling can produce predictions but lacks interpretability. Here, we present an interpretable ML framework for concentration quantification modelling and investigated the contributions of spectral and environmental factors-pH and organic carbon-to the estimation of metals with multiple concentration gradients, as analysed through SHAP (SHapley Additive exPlanations) data derived from four learning-based scenarios. The results indicated that scenarios SHC (spectral, pH, and organic carbon) and SH (spectral and pH) were the most optimal for chromium (Cr) [RPD = 1.42, Adj R2 = 0.62], and cadmium (Cd) [RPD = 1.80, Adj R2 = 0.80]. Under environmental constraints, the spectral predictability for Cr and Cd was improved by 67 % and 87 %, respectively. We concluded that interpretable modelling, utilising both spectral and soil environmental factors, holds significant potential for estimating heavy metals across concentration gradients. It is recommended that samples with higher organic carbon content and lower pH be selected to enhance Cr and Cd predictions. An advanced grasp of interpretable predictions facilitates earlier warning of heavy metal contamination and guides the formulation of robust sampling strategies.
Collapse
Affiliation(s)
- Yishan Sun
- Guangdong Provincial Key Laboratory of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangdong Engineering Technology Research Center of Remote Sensing Big Data Application, Guangzhou Institute of Geography, Guangdong Academy of Science, Guangzhou 510070, China; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuisen Chen
- Guangdong Provincial Key Laboratory of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangdong Engineering Technology Research Center of Remote Sensing Big Data Application, Guangzhou Institute of Geography, Guangdong Academy of Science, Guangzhou 510070, China; Joint Laboratory on Low-carbon Digital Monitoring, Guangdong Institute of Carbon Neutrality (Shaoguan), Shaoguan ShenBay Low Carbon Digital Technology Co., Ltd., Shaoguan 512026, China.
| | - Hao Jiang
- Guangdong Provincial Key Laboratory of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangdong Engineering Technology Research Center of Remote Sensing Big Data Application, Guangzhou Institute of Geography, Guangdong Academy of Science, Guangzhou 510070, China
| | - Boxiong Qin
- Guangdong Provincial Key Laboratory of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangdong Engineering Technology Research Center of Remote Sensing Big Data Application, Guangzhou Institute of Geography, Guangdong Academy of Science, Guangzhou 510070, China; Joint Laboratory on Low-carbon Digital Monitoring, Guangdong Institute of Carbon Neutrality (Shaoguan), Shaoguan ShenBay Low Carbon Digital Technology Co., Ltd., Shaoguan 512026, China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangdong Engineering Technology Research Center of Remote Sensing Big Data Application, Guangzhou Institute of Geography, Guangdong Academy of Science, Guangzhou 510070, China; Joint Laboratory on Low-carbon Digital Monitoring, Guangdong Institute of Carbon Neutrality (Shaoguan), Shaoguan ShenBay Low Carbon Digital Technology Co., Ltd., Shaoguan 512026, China
| | - Kai Jia
- Guangdong Provincial Key Laboratory of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangdong Engineering Technology Research Center of Remote Sensing Big Data Application, Guangzhou Institute of Geography, Guangdong Academy of Science, Guangzhou 510070, China; Joint Laboratory on Low-carbon Digital Monitoring, Guangdong Institute of Carbon Neutrality (Shaoguan), Shaoguan ShenBay Low Carbon Digital Technology Co., Ltd., Shaoguan 512026, China
| | - Chongyang Wang
- Guangdong Provincial Key Laboratory of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangdong Engineering Technology Research Center of Remote Sensing Big Data Application, Guangzhou Institute of Geography, Guangdong Academy of Science, Guangzhou 510070, China
| |
Collapse
|
7
|
Xiang Y, Rillig MC, Peñuelas J, Sardans J, Liu Y, Yao B, Li Y. Global Responses of Soil Carbon Dynamics to Microplastic Exposure: A Data Synthesis of Laboratory Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5821-5831. [PMID: 38416534 PMCID: PMC10993418 DOI: 10.1021/acs.est.3c06177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Microplastics (MPs) contamination presents a significant global environmental challenge, with its potential to influence soil carbon (C) dynamics being a crucial aspect for understanding soil C changes and global C cycling. This meta-analysis synthesizes data from 110 peer-reviewed publications to elucidate the directional, magnitude, and driving effects of MPs exposure on soil C dynamics globally. We evaluated the impacts of MPs characteristics (including type, biodegradability, size, and concentration), soil properties (initial pH and soil organic C [SOC]), and experimental conditions (such as duration and plant presence) on various soil C components. Key findings included the significant promotion of SOC, dissolved organic C, microbial biomass C, and root biomass following MPs addition to soils, while the net photosynthetic rate was reduced. No significant effects were observed on soil respiration and shoot biomass. The study highlights that the MPs concentration, along with other MPs properties and soil attributes, critically influences soil C responses. Our results demonstrate that both the nature of MPs and the soil environment interact to shape the effects on soil C cycling, providing comprehensive insights and guiding strategies for mitigating the environmental impact of MPs.
Collapse
Affiliation(s)
- Yangzhou Xiang
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, School of Geography and Resources, Guizhou Education University, Guiyang 550018, China
| | - Matthias C Rillig
- Institut für Biologie, Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Freie Universität Berlin, Berlin D-14195, Germany
| | - Josep Peñuelas
- CSIC Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain
- CREAF - Ecological and Forestry Applications Research Centre, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Jordi Sardans
- CSIC Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain
- CREAF - Ecological and Forestry Applications Research Centre, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Ying Liu
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Bin Yao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecolog Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems in Gansu Qingyang, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|