1
|
Bellingeri A, Palmaccio GM, Cecone C, Trotta F, Corsi I. Preliminary assessment of environmental safety (ecosafety) of dextrin-based nanosponges for environmental applications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116120. [PMID: 38401200 DOI: 10.1016/j.ecoenv.2024.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024]
Abstract
The ability to employ waste products, such as vegetable scraps, as raw materials for the synthesis of new promising adsorbing materials is at the base of the circular economy and end of waste concepts. Dextrin-based nanosponges (D_NS), both cyclodextrin (CD) and maltodextrin (MD), have shown remarkable adsorption abilities in the removal of toxic compounds from water and wastewater, thus representing a bio-based low-cost solution which is establishing itself in the market. Nevertheless, their environmental safety for either aquatic or terrestrial organisms has been overlooked, raising concern in terms of potential hazards to natural ecosystems. Here, the environmental safety (ecosafety) of six newly synthesized batches of D_NS was determined along with their full characterization by means of dynamic light scattering (DLS), thermogravimetric analysis (TGA), Fourier transformed infrared spectroscopy with attenuated total reflection (FTIR-ATR) and transmission electron microscopy (SEM). Ecotoxicity evaluation was performed using a battery of model organisms and ecotoxicity assays, such as the microalgae growth inhibition test using the freshwater Raphidocelis subcapitata and the marine diatom Dunaliella tertiolecta, regeneration assay using the freshwater cnidarian Hydra vulgaris and immobilization assay with the marine brine shrimp Artemia franciscana. Impact on seedling germination of a terrestrial plant of commercial interest, Cucurbita pepo was also investigated. Ecotoxicity data showed mild to low toxicity of the six batches, up to 1 mg/mL, in the following order: R. subcapitata > H. vulgaris > D. tertiolecta > A. franciscana > C. pepo. The only exception was represented by one batch (NS-Q+_BDE_(GLU2) which resulted highly toxic for both freshwater species, R. subcapitata and H. vulgaris. Those criticalities were solved with the synthesis of a fresh new batch and were hence attributed to the single synthesis and not to the specific D_NS formulation. No effect on germination of pumpkin but rather more a stimulative effect was observed. To our knowledge this is the first evaluation of the environmental safety of D_ NS. As such we emphasize that current formulations and exposure levels in the range of mg/mL do not harm aquatic and terrestrial species thus representing an ecosafe solution also for environmental applications.
Collapse
Affiliation(s)
- Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, Siena 53100, Italy.
| | - Gian Marco Palmaccio
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, Siena 53100, Italy
| | - Claudio Cecone
- Department of Chemistry, Nis Interdepartmental Centre, University of Turin, Via P. Giuria 7, Turin 10125, Italy
| | - Francesco Trotta
- Department of Chemistry, Nis Interdepartmental Centre, University of Turin, Via P. Giuria 7, Turin 10125, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, Siena 53100, Italy.
| |
Collapse
|
2
|
Lavorgna M, Dragone M, Russo C, D’Abrosca G, Nugnes R, Orlo E, della Valle M, Isernia C, Malgieri G, Iacovino R, Isidori M. Characterization of Complexes between Imidacloprid and β-Cyclodextrin: Evaluation of the Toxic Activity in Algae and Rotifers. Molecules 2023; 28:molecules28073049. [PMID: 37049814 PMCID: PMC10096419 DOI: 10.3390/molecules28073049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The development of new formulations can be driven by the knowledge of host–guest complexes using cyclodextrins which have the ability to include guest molecules within their hydrophobic cavities, improving the physicochemical properties of the guest. To rationally explore new pesticide formulations, the effects of cyclodextrins on the properties of such guest molecules need to be explored. Imidacloprid is a neonicotinoid systemic insecticide used worldwide. In this study, the inclusion complexes of Imidacloprid (IMI) with β-cyclodextrin (β-CD) were prepared in the solid state by co-precipitation and the physical mixing method, with a stoichiometry of 1:1 and 1:2 molar ratios. The obtained products, Imidacloprid:β-cyclodextrin inclusion complex (IMI:β-CD), were characterized in the solid state by Fourier transform-infrared (FT-IR) spectroscopy and X-ray powder diffractometry (XRD). In solution, the 1:1 stoichiometry for the inclusion complexes was established by the Job plot method, and the binding constant of IMI:β-CD was determined by UV–vis titration. The toxicity was determined in producers and primary consumers of the freshwater trophic chain, the green alga Raphidocelis subcapitata and the rotifer Brachionus calyciflorus, respectively. The results indicated that Imidacloprid forms inclusion complexes with CDs showing improved physicochemical properties compared to free Imidacloprid. The formation of the inclusion complex reduced the chronic toxicity in rotifers when IMI concentrations were close to those of environmental concern (tenths/hundredths of micromoles/L). Therefore, CD inclusion complexes could provide important advantages to be considered for the future industrial production of new formulations.
Collapse
|
3
|
Xiao M, Yin X, Gai H, Ma H, Qi Y, Li K, Hua X, Sun M, Song H. Effect of hydroxypropyl-β-cyclodextrin on the cometabolism of phenol and phenanthrene by a novel Chryseobacterium sp. BIORESOURCE TECHNOLOGY 2019; 273:56-62. [PMID: 30408644 DOI: 10.1016/j.biortech.2018.10.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 06/08/2023]
Abstract
Cometabolic degradation is an effective method to remove the polycyclic aromatic hydrocarbons (PAHs) with phenol as growth substrate from coal chemical wastewater (CCW). Unfortunately, the toxicity and low solubility of PAHs always restrict their degradation. In this study, Chryseobacterium sp. H202 was firstly isolated from the aerobic segment of CCW. Then, to improve the cometabolic degradation of PAHs, the effects of hydroxypropyl-β-cyclodextrin (HPCD) were investigated. Phenanthrene removal was accelerated in the presence of phenol; however, the degradation of phenol was inhibited because of the toxicity of phenanthrene. Addition of 50 mg/L HPCD accelerated the degradation of phenol and effectively improved the phenanthrene removal rate by about 55%. Inclusion of HPCD appeared to increase the apparent solubility and reduce the toxicity of phenanthrene, thereby improving the cometabolic degradation of phenol and phenanthrene. Therefore, HPCD can enhance the degradation of phenanthrene with phenol as the growth substrate during CCW treatment.
Collapse
Affiliation(s)
- Meng Xiao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiangyang Yin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hengjun Gai
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Honglei Ma
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yanfeng Qi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Kun Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xia Hua
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Meng Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hongbing Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
4
|
You J, Li H. Improving the accuracy of effect-directed analysis: the role of bioavailability. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1484-1498. [PMID: 29114659 DOI: 10.1039/c7em00377c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aquatic ecosystems have been suffering from contamination by multiple stressors. Traditional chemical-based risk assessment usually fails to explain the toxicity contributions from contaminants that are not regularly monitored or that have an unknown identity. Diagnosing the causes of noted adverse outcomes in the environment is of great importance in ecological risk assessment and in this regard effect-directed analysis (EDA) has been designed to fulfill this purpose. The EDA approach is now increasingly used in aquatic risk assessment owing to its specialty in achieving effect-directed nontarget analysis; however, a lack of environmental relevance makes conventional EDA less favorable. In particular, ignoring the bioavailability in EDA may cause a biased and even erroneous identification of causative toxicants in a mixture. Taking bioavailability into consideration is therefore of great importance to improve the accuracy of EDA diagnosis. The present article reviews the current status and applications of EDA practices that incorporate bioavailability. The use of biological samples is the most obvious way to include bioavailability into EDA applications, but its development is limited due to the small sample size and lack of evidence for metabolizable compounds. Bioavailability/bioaccessibility-based extraction (bioaccessibility-directed and partitioning-based extraction) and passive-dosing techniques are recommended to be used to integrate bioavailability into EDA diagnosis in abiotic samples. Lastly, the future perspectives of expanding and standardizing the use of biological samples and bioavailability-based techniques in EDA are discussed.
Collapse
Affiliation(s)
- Jing You
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | | |
Collapse
|
5
|
Miazek K, Iwanek W, Remacle C, Richel A, Goffin D. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review. Int J Mol Sci 2015; 16:23929-69. [PMID: 26473834 PMCID: PMC4632732 DOI: 10.3390/ijms161023929] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 12/29/2022] Open
Abstract
Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.
Collapse
Affiliation(s)
- Krystian Miazek
- AgricultureIsLife Platform, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, Gembloux B-5030, Belgium.
| | - Waldemar Iwanek
- Faculty of Mathematics and Natural Sciences, the Jan Kochanowski University in Kielce, Swietokrzyska 15, Kielce 25-406, Poland.
| | - Claire Remacle
- Genetics and Physiology of Microalgae, Institute of Botany, University of Liege, B22, 27, Bld du Rectorat, Liège B-4000, Belgium.
| | - Aurore Richel
- Unit of Biological and Industrial Chemistry, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, Gembloux B-5030, Belgium.
| | - Dorothee Goffin
- Cellule Innovation et Créativité, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, Gembloux B-5030, Belgium.
| |
Collapse
|
6
|
Liu H, Cai X, Chen J. Mathematical model for cyclodextrin alteration of bioavailability of organic pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5835-5842. [PMID: 23668369 DOI: 10.1021/es303724b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
While many cyclodextrin-based applications have been developed to assess or enhance bioavailability of organic pollutants, the choice of cyclodextrin (CD) is largely empirical, with little consideration of pollutant diversity and environmental matrix effects. This study aimed at developing a mathematical model for quantifying CD alteration of bioavailability of organic pollutants. Cyclodextrin appears to have multiple effects, together contributing to its bioavailability-enhancing property. Cyclodextrin is adsorbed onto the adsorbent matrix to different extents. The adsorbed CD is capable of sequestrating organic pollutants, highlighting the role of a pseudophase similar to solid environmental matrix. Aqueous CD can reduce adsorption of organic pollutants via inclusion complexation. The two effects cancel each other to a certain degree, which determines the levels of organic pollutants dissolved (comprising freely dissolved and CD-included forms). Additionally, the CD-included form is nearly identical in biological activity to the free form. A mathematical model of one variable (i.e., CD concentration) was derived to quantify effects of CD on the bioavailability of organic pollutants. Model analysis indicates that alteration of bioavailability of organic pollutants by CD depends on both CD (type and level) and environmental matrix. The selection of CD type and amendment level for a given application may be predicted by the model.
Collapse
Affiliation(s)
- Huihui Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | | | | |
Collapse
|
7
|
Silkina A, Bazes A, Mouget JL, Bourgougnon N. Comparative efficiency of macroalgal extracts and booster biocides as antifouling agents to control growth of three diatom species. MARINE POLLUTION BULLETIN 2012; 64:2039-46. [PMID: 22853990 DOI: 10.1016/j.marpolbul.2012.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 06/18/2012] [Accepted: 06/27/2012] [Indexed: 06/01/2023]
Abstract
The application of 'booster biocides' Diuron, Tolylfluanid and Copper thiocyanate inbantifouling paints, used to prevent development of biofouling, needs to be monitored before assessing their impacts on the environment. An alternative approach aims to propose eco-friendly and effective antifoulants isolated from marine organisms such as seaweeds. In this study, the effects of 'booster biocides' and the ethanol and dichloromethane extracts from a brown (Sargassum muticum) and a red alga (Ceramium botryocarpum) have been compared by algal growth inhibition tests of marine diatoms. The most efficient extracts were ethanol fraction of S. muticum and C. botryocarpum extracts with growth EC(50)=4.74 and 5.3μg mL(-1) respectively, with reversible diatom growth effect. The booster biocides are more efficient EC(50)=0.52μg mL(-1), but are highly toxic. Results validate the use of macroalgal extracts as non toxic antifouling compounds, and they represent valuable environmentally friendly alternatives in comparison with currently used biocides.
Collapse
Affiliation(s)
- Alla Silkina
- Laboratoire de Biotechnologie et Chimie Marines, Université de Bretagne-Sud, Centre de Recherche Saint Maudé, 56321 Lorient Cedex, France.
| | | | | | | |
Collapse
|
8
|
Wang EJ, Chen GY. Crystal structure of β-cyclodextrin-4-chlorobenzoic acid complex: unusual C–Cl⋯π interaction between 4-chlorobenzoic acids in β-cyclodextrin dimer. CHINESE CHEM LETT 2011. [DOI: 10.1016/j.cclet.2011.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Considerations for Incorporating Bioavailability in Effect-Directed Analysis and Toxicity Identification Evaluation. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2011. [DOI: 10.1007/978-3-642-18384-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Hajdu C, Gruiz K, Fenyvesi É, Nagy ZM. Application of cyclodextrins in environmental bioassays for soil. J INCL PHENOM MACRO 2010. [DOI: 10.1007/s10847-010-9855-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|