1
|
Li P, Mei J, Xie J. Antibacterial mechanism of CO 2 combined with low temperature against Shewanella putrefaciens by biochemical and metabolomics analysis. Food Chem 2024; 460:140555. [PMID: 39047490 DOI: 10.1016/j.foodchem.2024.140555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
To further reveal the inhibition mechanism of carbon dioxide (CO2) on Shewanella putrefaciens (S. putrefaciens), influence on metabolic function was studied by biochemical and metabolomics analysis. Accordingly, reduction of intracellular pH (pHi), depolarization of cell membrane and accumulation of reactive oxygen species (ROS) indicated that CO2 changed the membrane permeability of S. putrefaciens. Besides, adenosine triphosphate (ATP), ATPase, nicotinamide adenine dinucleotide (NAD+/NADH) and ratios of NADH/NAD+ were detected, indicating a role of CO2 in repressing respiratory pathway and electron transport. According to metabolomics results, CO2 induced differential expressions of metabolites, disordered respiratory chain and weakened energy metabolism of S. putrefaciens. Inhibition of respiratory rate-limiting enzymes also revealed that electron transfer of respiratory chain was blocked, cell respiration was weakened, and thus energy supply was insufficient under CO2 stress. These results revealed that CO2 caused disruption of metabolic function, which might be the main cause of growth inhibition for S. putrefaciens.
Collapse
Affiliation(s)
- Peiyun Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| |
Collapse
|
2
|
Sahoo KK, Sinha A, Das D. Process engineering strategy for improved methanol production in Methylosinus trichosporium through enhanced mass transfer and solubility of methane and carbon dioxide. BIORESOURCE TECHNOLOGY 2023; 371:128603. [PMID: 36634876 DOI: 10.1016/j.biortech.2023.128603] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Methanol was produced in a two-stage integrated process using Methylosinus trichosporium NCIMB 11131. The first stage involved sequestration of methane to produce methanotrophic biomass, which was utilized as biocatalyst in the second stage to convert CO2 into methanol. A combinatorial process engineering approach of design of micro-sparger, engagement of draft tube, addition of mass transfer vector and elevation of reactor operating pressure was employed to enhance production of biomass and methanol. Maximum biomass titer of 7.68 g/L and productivity of 1.46 g/L d-1 were achieved in an airlift reactor equipped with a micro-sparger of 5 µm pore size, in the presence of draft tube and 10 % v/v silicone oil, as mass transfer vector. Maximum methane fixation rate was estimated to be 0.80 g/L d-1. Maximum methanol titer of 1.98 g/L was achieved under an elevated operating pressure of 4 bar in a high-pressure stirred tank reactor.
Collapse
Affiliation(s)
- Krishna Kalyani Sahoo
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Ankan Sinha
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Debasish Das
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
3
|
Liu Y, Chen N, Tong S, Liang J, Yang C, Feng C. Performance enhancement of H 2S-based autotrophic denitrification with bio-gaseous CO 2 as sole carbon source through new pH adjustment materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110157. [PMID: 31999611 DOI: 10.1016/j.jenvman.2020.110157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/29/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
H2S-based denitrification could achieve synchronous removal of nitrate and H2S and had been regarded as an efficient way for biogas desulfurization and wastewater denitrification. Using CO2 in biogas as carbon source had a potential of saving cost further, but the performance deteriorated due to the drop in pH. Two kinds of nature ore, medical stone and phosphate ore, were added as new pH adjustment materials in this study, and feasibility of using CO2 as sole carbon source for H2S-based denitrification was investigated. As a result, both materials could increase the pH from 4.5 to above 6.0. Compared with medical stone, higher level of pH (up to 6.39) and nitrate removal efficiency (99.1%) were obtained with phosphate ore. In addition, ATP increased more rapidly than the control, reflecting improvement on microbial activities. Therefore, phosphate ore as the pH adjustment material could improve H2S-based denitrification performance obviously.
Collapse
Affiliation(s)
- Yongjie Liu
- Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences, Beijing), Ministry of Education, No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Shuang Tong
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing, 100068, China
| | - Jing Liang
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chen Yang
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chuanping Feng
- Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences, Beijing), Ministry of Education, No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
4
|
Yu T, Chen Y. Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:865-879. [PMID: 30481713 DOI: 10.1016/j.scitotenv.2018.11.301] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 05/24/2023]
Abstract
Before the industrial revolution, the atmospheric CO2 concentration was 180-330 ppm; however, fossil-fuel combustion and forest destruction have led to increased atmospheric CO2 concentration. CO2 capture and storage is regarded as a promising strategy to prevent global warming and ocean acidification and to alleviate elevated atmospheric CO2 concentration, but the leakage of CO2 from storage system can lead to rapid acidification of the surrounding circumstance, which might cause negative influence on environmental microbes. The effects of elevated CO2 on microbes have been reported extensively, but the review regarding CO2 affecting different environmental microorganisms has never been done previously. Also, the mechanisms of CO2 affecting environmental microorganisms are usually contributed to the change of pH values, while the direct influences of CO2 on microorganisms were often neglected. This paper aimed to provide a systematic review of elevated CO2 affecting environmental microbes and its mechanisms. Firstly, the influences of elevated CO2 and potential leakage of CO2 from storage sites on community structures and diversity of different surrounding environmental microbes were assessed and compared. Secondly, the adverse impacts of CO2 on microbial growth, cell morphology and membranes, bacterial spores, and microbial metabolism were introduced. Then, based on biochemical principles and knowledge of microbiology and molecular biology, the fundamental mechanisms of the influences of carbon dioxide on environmental microbes were discussed from the aspects of enzyme activity, electron generation and transfer, and key gene and protein expressions. Finally, key questions relevant to the environmental effect of CO2 that need to be answered in the future were addressed.
Collapse
Affiliation(s)
- Tong Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Borrero-Santiago AR, Carbú M, DelValls TÁ, Riba I. CO2 leaking from sub-seabed storage: Responses of two marine bacteria strains. MARINE ENVIRONMENTAL RESEARCH 2016; 121:2-8. [PMID: 27255122 DOI: 10.1016/j.marenvres.2016.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Carbon capture and storage (CCS) in stable geological locations is one of the options to mitigate the negative effects of global warming produced by the increase in CO2 concentrations in the atmosphere. A CO2 leak is one of the risks associated with this strategy. Marine bacteria attached to the sediment may be affected by an acidification event. Responses of two marine strains (Roseobacter sp. CECT 7117 and Pseudomonas litoralis CECT 7670) were assessed under different scenarios using a range of pH values (7.8, 7, 6.5, 6, and 5.5) to mimic a CO2 leak. A CO2 injection system was used to simulate an escape from a stable sub-seabed. Growth rate (μ), cell number, inhibition of Relative Inhibitory Effect (RI CO2) and inhibited population were analysed as endpoints. P. litoralis showed more sensitivity to high CO2 concentrations than Roseobacter sp. Our results highlight the diversity and resistance in marine bacteria and their capacity to adapt under a stressful CO2 leakage.
Collapse
Affiliation(s)
- A R Borrero-Santiago
- Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, UNESCO/UNITWIN WiCoP, Campus de Excelencia Internacional del Mar (CEIMAR), Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain.
| | - M Carbú
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| | - T Á DelValls
- Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, UNESCO/UNITWIN WiCoP, Campus de Excelencia Internacional del Mar (CEIMAR), Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| | - I Riba
- Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, UNESCO/UNITWIN WiCoP, Campus de Excelencia Internacional del Mar (CEIMAR), Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
6
|
Borrero-Santiago AR, DelValls TA, Riba I. Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 131:157-163. [PMID: 27107627 DOI: 10.1016/j.ecoenv.2016.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/02/2016] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
Carbon capture and storage (CCS) is one of the options to mitigate the negative effects of the climate change. However, this strategy may have associated some risks such as CO2 leakages due to an escape from the reservoir. In this context, marine bacteria have been underestimated. In order to figure out the gaps and the lack of knowledge, this work summarizes different studies related to the potential effects on the marine bacteria associated with an acidification caused by a CO2 leak from CSS. An improved integrated model for risk assessment is suggested as a tool based on the rapid responses of bacterial community. Moreover, this contribution proposes a strategy for laboratory protocols using Pseudomona stanieri (CECT7202) as a case of study and analyzes the response of the strain under different CO2 conditions. Results showed significant differences (p≤0.05) under six diluted enriched medium and differences about the days in the exponential growth phase. Dilution 1:10 (Marine Broth 2216 with seawater) was selected as an appropriate growth medium for CO2 toxicity test in batch cultures. This work provide an essential and a complete tool to understand and develop a management strategy to improve future works related to possible effects produced by potential CO2 leaks.
Collapse
Affiliation(s)
- A R Borrero-Santiago
- Departamento de Química Física. Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz. Grupo de Contaminación de sistemas acuáticos. UNESCO/UNITWIN Wicop. Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain.
| | - T A DelValls
- Departamento de Química Física. Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz. Grupo de Contaminación de sistemas acuáticos. UNESCO/UNITWIN Wicop. Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| | - I Riba
- Departamento de Química Física. Facultad de Ciencias Del Mar y Ambientales, Universidad de Cádiz. Grupo de Contaminación de sistemas acuáticos. UNESCO/UNITWIN Wicop. Polígono Río San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
7
|
Wilkins MJ, Hoyt DW, Marshall MJ, Alderson PA, Plymale AE, Markillie LM, Tucker AE, Walter ED, Linggi BE, Dohnalkova AC, Taylor RC. CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough. Front Microbiol 2014; 5:507. [PMID: 25309528 PMCID: PMC4174866 DOI: 10.3389/fmicb.2014.00507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/09/2014] [Indexed: 12/02/2022] Open
Abstract
Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep subsurface environments that impact indigenous microbial activities. The combined effects of pressurized CO2 on a model sulfate-reducing microorganism, Desulfovibrio vulgaris, have been assessed using a suite of genomic and kinetic measurements. Novel high-pressure NMR time-series measurements using 13C-lactate were used to track D. vulgaris metabolism. We identified cessation of respiration at CO2 pressures of 10 bar, 25 bar, 50 bar, and 80 bar. Concurrent experiments using N2 as the pressurizing phase had no negative effect on microbial respiration, as inferred from reduction of sulfate to sulfide. Complementary pressurized batch incubations and fluorescence microscopy measurements supported NMR observations, and indicated that non-respiring cells were mostly viable at 50 bar CO2 for at least 4 h, and at 80 bar CO2 for 2 h. The fraction of dead cells increased rapidly after 4 h at 80 bar CO2. Transcriptomic (RNA-Seq) measurements on mRNA transcripts from CO2-incubated biomass indicated that cells up-regulated the production of certain amino acids (leucine, isoleucine) following CO2 exposure at elevated pressures, likely as part of a general stress response. Evidence for other poorly understood stress responses were also identified within RNA-Seq data, suggesting that while pressurized CO2 severely limits the growth and respiration of D. vulgaris cells, biomass retains intact cell membranes at pressures up to 80 bar CO2. Together, these data show that geologic sequestration of CO2 may have significant impacts on rates of sulfate reduction in many deep subsurface environments where this metabolism is a key respiratory process.
Collapse
Affiliation(s)
- Michael J Wilkins
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA ; Department of Microbiology, School of Earth Sciences, The Ohio State University Columbus, OH, USA
| | - David W Hoyt
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| | - Matthew J Marshall
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Paul A Alderson
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Andrew E Plymale
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - L Meng Markillie
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| | - Abby E Tucker
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Eric D Walter
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| | - Bryan E Linggi
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| | - Alice C Dohnalkova
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| | - Ron C Taylor
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| |
Collapse
|
8
|
Frerichs J, Rakoczy J, Ostertag-Henning C, Krüger M. Viability and adaptation potential of indigenous microorganisms from natural gas field fluids in high pressure incubations with supercritical CO2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1306-1314. [PMID: 24320192 DOI: 10.1021/es4027985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Carbon Capture and Storage (CCS) is currently under debate as large-scale solution to globally reduce emissions of the greenhouse gas CO2. Depleted gas or oil reservoirs and saline aquifers are considered as suitable reservoirs providing sufficient storage capacity. We investigated the influence of high CO2 concentrations on the indigenous bacterial population in the saline formation fluids of a natural gas field. Bacterial community changes were closely examined at elevated CO2 concentrations under near in situ pressures and temperatures. Conditions in the high pressure reactor systems simulated reservoir fluids i) close to the CO2 injection point, i.e. saturated with CO2, and ii) at the outer boundaries of the CO2 dissolution gradient. During the incubations with CO2, total cell numbers remained relatively stable, but no microbial sulfate reduction activity was detected. After CO2 release and subsequent transfer of the fluids, an actively sulfate-respiring community was re-established. The predominance of spore-forming Clostridiales provided evidence for the resilience of this taxon against the bactericidal effects of supercritical (sc)CO2. To ensure the long-term safety and injectivity, the viability of fermentative and sulfate-reducing bacteria has to be considered in the selection, design, and operation of CCS sites.
Collapse
Affiliation(s)
- Janin Frerichs
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Lower Saxony, Germany
| | | | | | | |
Collapse
|
9
|
Gulliver DM, Lowry GV, Gregory KB. CO2concentration and pH alters subsurface microbial ecology at reservoir temperature and pressure. RSC Adv 2014. [DOI: 10.1039/c4ra02139h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular ecology techniques are utilized to determine the impact of CO2concentrations on microbial communities under reservoir temperature and pressure simulating geological carbon sequestration.
Collapse
Affiliation(s)
- Djuna M. Gulliver
- Office of Research & Development
- National Energy Technology Laboratory
- Pittsburgh, USA
- Department of Civil and Environmental Engineering
- Carnegie Mellon University
| | - Gregory V. Lowry
- Office of Research & Development
- National Energy Technology Laboratory
- Pittsburgh, USA
- Department of Civil and Environmental Engineering
- Carnegie Mellon University
| | - Kelvin B. Gregory
- Office of Research & Development
- National Energy Technology Laboratory
- Pittsburgh, USA
- Department of Civil and Environmental Engineering
- Carnegie Mellon University
| |
Collapse
|