1
|
Jamil HMA, Gatasheh MK, Ahmad R, Ibrahim KE, Khan SA, Irshad U, Shahzad M, Abbasi AM. Ectomycorrhiza and ethylenediurea reduced the impact of high nitrogen and ozone stresses and increased the growth of Cedrus deodara. Heliyon 2024; 10:e28635. [PMID: 38586366 PMCID: PMC10998246 DOI: 10.1016/j.heliyon.2024.e28635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Cedrus deodara is the central conifer plant affected by ozone and nitrogen pollutants among forest species worldwide. The growth of C. deodara depends upon the ectomycorrhizal (ECM) association, which is usually disturbed by these factors. This study aims to understand how these factors affect plants at physiological and biochemical levels. Three fungal strain consortiums were inoculated with two-year-old C. deodara seedlings. The stresses of 100 kg N h-1and 100 ppb O3 were applied for six months to study their impact on chlorophyll and antioxidant enzymes (SOD, CAT, and APX). The results showed that C2 (Consortium of Cedrus deodara) positively impacted the growth of selected plant species. The high photosynthesis rate was determined by enhanced chlorophyll content, and C2-treated plants showed high chlorophyll content. Relatively, chlorophyll a and b contents increased significantly in the seedlings treated with Ethylenediurea (EDU) alone and with ozone stress. In addition, a significant difference was observed between EDU and O3-treated plants (14% EDU400-O3 and 23% EDU600-O3) and the control. Overall, antioxidant activities were higher in the treated samples than in the control. The order of SOD activity was C2 (448 U/gFW) and lowest (354.7 U/gFW) in control. APX also showed higher activity in treated plants in C1 ≥ C2 ≥ C3+O3, whereas CAT activity was the highest in C2 treatments. Ozone and nitrogen-stressed plants showed higher activities than EDU-treated plants compared to non-treated ones. Our findings highlight the importance of understanding the signaling effects of numerous precursors. Moreover, an extended investigation of seedlings developing into trees must be conducted to verify the potential of ectomycorrhizal strains associated with C. deodara and comprehend EDU's role as a direct molecular scavenger of reactive toxicants.
Collapse
Affiliation(s)
- Hafiz Muhammad Ansab Jamil
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Rafiq Ahmad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabaz Ali Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Usman Irshad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Muhammad Shahzad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- University of Gastronomic Sciences of Pollenzo, Piazza V. Emanuele II, I-12042, Bra/Pollenzo, Italy
| |
Collapse
|
2
|
Zhao M, Zhang Y, Pei C, Chen T, Mu J, Liu Y, Wang Y, Wang W, Xue L. Worsening ozone air pollution with reduced NO x and VOCs in the Pearl River Delta region in autumn 2019: Implications for national control policy in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116327. [PMID: 36183531 DOI: 10.1016/j.jenvman.2022.116327] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Ozone (O3) pollution has emerged as a major air quality issue in China. Here we emphasize the great challenges in controlling O3 pollution by analyzing the recent experience of the Pearl River Delta (PRD) in southern China in reducing the autumn O3 peaks. Despite significant reductions in the concentration of O3 precursors, i.e., nitrogen oxides (NOx) and volatile organic compounds (VOCs), regional O3 pollution in the PRD was largely worse in autumn 2019 than in autumn 2018. We found that the supra-regional and regional background concentrations of O3 increased significantly in the PRD in autumn 2019 due to increased concentrations of O3 in the vast surrounding areas. We also observed slight increases in the concentrations of PRD-regionally and Guangzhou-locally produced O3. A chemical box-model analysis confirmed a slight increase in the in-situ production of O3 and revealed that increased biogenic VOCs (BVOCs) and decreased NOx levels negated the effect of significant decrease in the anthropogenic VOCs. Taken together, these aspects exacerbated O3 pollution in the PRD region in autumn 2019 relative to autumn 2018. The findings from this study highlight the strong interactions of O3 pollution over multiple regions and the need for collaborative inter-regional efforts to control O3 pollution. The experience of PRD also underlines the key role of BVOCs and the importance of science-based strategies to decrease VOCs and NOx.
Collapse
Affiliation(s)
- Min Zhao
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Yingnan Zhang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Chenglei Pei
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, Guangdong, 510060, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou, Guangdong, 510275, China
| | - Tianshu Chen
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiangshan Mu
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Yuhong Liu
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Yujun Wang
- Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, Guangdong, 510060, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China; Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
3
|
Arshad A. A growth and biochemistry of ten high yielding genotypes of Pakistani rice (Oryza sativa L.) at maturity under elevated tropospheric ozone. Heliyon 2021; 7:e08198. [PMID: 34729434 PMCID: PMC8545687 DOI: 10.1016/j.heliyon.2021.e08198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/03/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Experimental studies were conducted to estimate the possible damage caused to ten rice (Oryza sativa L.) genotypes of Pakistan by tropospheric ozone. The experimental site is located at 31.4504° N and 73.1350° E, at an altitude of 184 m.a.s level with an average annual rainfall of 784 mm. A suitable and agile method was adopted to assess tolerance and susceptibility in rice genotypes at an early growth stage. Genotype Injury response, growth and biochemical parameters were measured to estimate possible effects of ozone, which was subsequently proclaimed as a criterion for ozone tolerance. Rice genotypes were subjected to ozone concentrations of 70 pbb (Current ambient) and 120 pbb (expected in near future) under a polytunnel. The findings indicated that ozone, an atmospheric pollutant, substantially harmed crop growth and metabolism, as well as inflicted a specific type of foliar injury that caused early leaf senescence. Rice genotype IR-9 followed by Punjab-Basmati and Ksk-434 appeared to be the most susceptible, whereas Basmati-515 followed by Basmati 2000 and super-Basmati were found to be Ozone-tolerant. Plant genotypes grown under elevated ozone showed 13.45% and 11.35% reduction in total root and shoot dry weight, and 25.54% and 6.6% decrease in plant leaf area and plant total length respectively compared to the control group. A significant interaction between treatment × chemical components and growth parameters was also found. The Present study confirms a direct relationship between visual response and growth as well as biochemical parameters. Declared results were statistically analyzed by using analysis of variance at confidence level of p < 0.05.
Collapse
Affiliation(s)
- Adnan Arshad
- Department of Botany, Government College University, Faisalabad, 3800, Pakistan
| |
Collapse
|
4
|
Khan S, Nazneen S, Khan S, Ali N. Effects of ozone phytotoxicity in reducing the yield and nutritional quality of chilli (Capsicum annuum L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8889-8897. [PMID: 33078351 DOI: 10.1007/s11356-020-11139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
This study was designed to assess the effects of tropospheric ozone (O3) on the yield and nutritional quality of chilli (Capsicum annuum L. cv. Pusa Jwala) using ethylene diurea (EDU) under field conditions in Peshawar, Pakistan. Average O3 concentration ranged between 38 and 68 ppb which is high enough to cause phytotoxic effects. Accumulated ozone exposure over a threshold of 40 ppm h (AOT40) value calculated for 3-month period was found to be substantially higher, i.e., 7.3 ppm h. Various growth and yield parameters analyzed on weekly basis showed that the plant height (6.3%), number of flowers (15%), fruits (36%), and total dry biomass (30%) and its nutritional quality parameters such as mean crude protein, fat, and fiber showed 24%, 100%, and 12% better results in EDU-treated plants as compared with control, respectively. However, mineral contents showed no significant difference (p < 0.05) for both the groups. The results of this study concluded that ambient O3 is a threat to the selected plant species thus affecting its quality and yield and EDU remains successful in protecting the chilli (Capsicum annuum L.) against the negative effects of tropospheric ozone.
Collapse
Affiliation(s)
- Sehrish Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Shahla Nazneen
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Neelum Ali
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| |
Collapse
|
5
|
Jiang L, Feng Z, Dai L, Shang B, Paoletti E. Large variability in ambient ozone sensitivity across 19 ethylenediurea-treated Chinese cultivars of soybean is driven by total ascorbate. J Environ Sci (China) 2018; 64:10-22. [PMID: 29478629 DOI: 10.1016/j.jes.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 06/08/2023]
Abstract
The sensitivity of Chinese soybean cultivars to ambient ozone (O3) in the field is unknown, although soybean is a major staple food in China. Using ethylenediurea (EDU) as an O3 protectant, we tested the gas exchange, pigments, antioxidants and biomass of 19 cultivars exposed to 28ppm·hr AOT40 (accumulated O3 over an hourly concentration threshold of 40ppb) over the growing season at a field site in China. By comparing the average biomass with and without EDU, we estimated the cultivar-specific sensitivity to O3 and ranked the cultivars from very tolerant (<10% change) to highly sensitive (>45% change), which helps in choosing the best-suited cultivars for local cultivation. Higher lipid peroxidation and activity of the ascorbate peroxidase enzyme were major responses to O3 damage, which eventually translated into lower biomass production. The constitutional level of total ascorbate in the leaves was the most important parameter explaining O3 sensitivity among these cultivars. Surprisingly, the role of stomatal conductance was insignificant. These results will guide future breeding efforts towards more O3-tolerant cultivars in China, while strategies for implementing control measures of regional O3 pollution are being implemented. Overall, these results suggest that present ambient O3 pollution is a serious concern for soybean in China, which highlights the urgent need for policy-making actions to protect this critical staple food.
Collapse
Affiliation(s)
- Lijun Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lulu Dai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Danh NT, Huy LN, Oanh NTK. Assessment of rice yield loss due to exposure to ozone pollution in Southern Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1069-1079. [PMID: 27265741 DOI: 10.1016/j.scitotenv.2016.05.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/08/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
The study domain covered the Eastern region of Southern of Vietnam that includes Ho Chi Minh City (HCMC) and five other provinces. Rice production in the domain accounted for 13% of the national total with three crop cycles per year. We assessed ozone (O3) induced rice production loss in the domain for 2010 using simulated hourly surface O3 concentrations (WRF/CAMx; 4km resolution). Simulated O3 was higher in January-February (largely overlaps the first crop) and September-December (third crop), and lower in March-June (second crop). Spatially, O3 was higher in downwind locations of HCMC and were comparable with observed data. Relative yield loss (RYL) was assessed for each crop over the respective growing period (105days) using three metrics: AOT40, M7 and flux-based O3 dose of POD10. Higher RYL was estimated for the downwind of HCMC. Overall, the rice production loss due to O3 exposure in the study domain in 2010 was the highest for the first crop (up to 25,800metrictons), the second highest for the third crop (up to 21,500tons) and the least for the second crop (up to 6800tons). The low RYL obtained for the second crop by POD10 may be due to the use of a high threshold value (Y=10nmolm(-2)s(-1)). Linear regression between non-null radiation POD0 and POD10 had similar slopes for the first and third crop when POD0 was higher and very low slope for the second crop when POD0 was low. The results of this study can be used for the rice crop planning to avoid the period of potential high RYL due to O3 exposure.
Collapse
Affiliation(s)
- Ngo Thanh Danh
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani 12120, Thailand
| | - Lai Nguyen Huy
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani 12120, Thailand
| | - Nguyen Thi Kim Oanh
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani 12120, Thailand.
| |
Collapse
|