1
|
Shukla A, Bunkar N, Kumar R, Bhargava A, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:760-777. [PMID: 30530146 DOI: 10.1016/j.scitotenv.2018.11.381] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/23/2018] [Accepted: 11/25/2018] [Indexed: 05/28/2023]
Abstract
Air pollution is one of the leading causes of deaths in Southeast Asian countries including India. Exposure to air pollutants affects vital cellular mechanisms and is intimately linked with the etiology of a number of chronic diseases. Earlier work from our laboratory has shown that airborne particulate matter disturbs the mitochondrial machinery and causes significant damage to the epigenome. Mitochondrial reactive oxygen species possess the ability to trigger redox-sensitive signaling mechanisms and induce irreversible epigenomic changes. The electrophilic nature of reactive metabolites can directly result in deprotonation of cytosine at C-5 position or interfere with the DNA methyltransferases activity to cause alterations in DNA methylation. In addition, it also perturbs level of cellular metabolites critically involved in different epigenetic processes like acetylation and methylation of histone code and DNA hypo or hypermethylation. Interestingly, these modifications may persist through downstream generations and result in the transgenerational epigenomic inheritance. This phenomenon of subsequent transfer of epigenetic modifications is mainly associated with the germ cells and relies on the germline stability of the epigenetic states. Overall, the recent literature supports, and arguably strengthens, the contention that air pollution might contribute to transmission of epimutations from gametes to zygotes by involving mitochondrial DNA, parental allele imprinting, histone withholding and non-coding RNAs. However, larger prospective studies using innovative, integrated epigenome-wide metabolomic strategy are highly warranted to assess the air pollution induced transgenerational epigenetic inheritance and associated human health effects.
Collapse
Affiliation(s)
- Anushi Shukla
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajat Kumar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Irina Y Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
2
|
Nakao M, Ishihara Y, Kim CH, Hyun IG. The Impact of Air Pollution, Including Asian Sand Dust, on Respiratory Symptoms and Health-related Quality of Life in Outpatients With Chronic Respiratory Disease in Korea: A Panel Study. J Prev Med Public Health 2018; 51:130-139. [PMID: 29886708 PMCID: PMC5996190 DOI: 10.3961/jpmph.18.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/17/2018] [Indexed: 11/09/2022] Open
Abstract
Objectives Air pollution is a growing concern in Korea because of transboundary air pollution from mainland China. A panel study was conducted to clarify the effects of air pollution on respiratory symptoms and health-related quality of life (HR-QoL) in outpatients with and without chronic obstructive pulmonary disease (COPD) in Korea. Methods Patients filled out a questionnaire including self-reported HR-QoL in February and were followed up in May and July. The study was conducted from 2013 to 2015, with different participants each year. Air quality parameters were applied in a generalized estimating equation as independent variables to predict factors affecting HR-QoL. Results Lower physical fitness scores were associated with Asian sand dust events. Daily activity scores were worse when there were high concentrations of particulate matter (PM) less than 10 μm in diameter (PM10). Lower social functioning scores were associated with high PM less than 2.5 μm in diameter and nitrogen dioxide (NO2) concentrations. High NO2 concentrations also showed a significant association with mental health scores. Weather-related cough was prevalent when PM10, NO2, or ozone (O3) concentrations were high, regardless of COPD severity. High PM10 concentrations were associated with worsened wheezing, particularly in COPD patients. Conclusions The results suggest that PM, NO2, and O3 cause respiratory symptoms leading to HR-QoL deterioration. While some adverse effects of air pollution appeared to occur regardless of COPD, others occurred more often and more intensely in COPD patients. The public sector, therefore, needs to consider tailoring air pollution countermeasures to people with different conditions to minimize adverse health effects.
Collapse
Affiliation(s)
- Motoyuki Nakao
- Department of Public Health, Kurume University School of Medicine, Kurume, Japan
| | - Yoko Ishihara
- Department of Public Health, Kurume University School of Medicine, Kurume, Japan
| | - Cheol-Hong Kim
- Department of Internal Medicine, Respiratory Health Center, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - In-Gyu Hyun
- Department of Internal Medicine, Respiratory Health Center, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| |
Collapse
|
3
|
Kamimura A, Armenta B, Nourian M, Assasnik N, Nourian K, Chernenko A. Perceived Environmental Pollution and Its Impact on Health in China, Japan, and South Korea. J Prev Med Public Health 2018; 50:188-194. [PMID: 28605887 PMCID: PMC5495686 DOI: 10.3961/jpmph.17.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/17/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives Environmental pollution is a significant global issue. Both objective (scientifically measured) environmental pollution and perceived levels of pollution are important predictors of self-reported health. The purpose of this study was to compare the associations between perceived environmental pollution and health in China, Japan, and South Korea. Methods Data were obtained from the East Asian Social Survey and the Cross-National Survey Data Sets: Health and Society in East Asia, 2010 (n=7938; China, n=3866; Japan, n=2496; South Korea, n=1576). Results South Koreans perceived environmental pollution to be the most severe, while Japanese participants perceived environmental pollution to be the least severe. Although the Japanese did not perceive environmental pollution to be very severe, their self-rated physical health was significantly related to perceived environmental pollution, while the analogous relationships were not significant for the Chinese or Korean participants. Better mental health was related to lower levels of perceived air pollution in China, as well as lower levels of perceived all types of pollution in Japan and lower levels of perceived noise pollution in South Korea. Conclusions Physical and mental health and individual socio-demographic characteristics were associated with levels of perceived environmental pollution, but with different patterns among these three countries.
Collapse
Affiliation(s)
- Akiko Kamimura
- Department of Sociology, University of Utah, Salt Lake City, UT, USA
| | - Bianca Armenta
- Department of Sociology, University of Utah, Salt Lake City, UT, USA
| | - Maziar Nourian
- Department of Sociology, University of Utah, Salt Lake City, UT, USA
| | - Nushean Assasnik
- Department of Sociology, University of Utah, Salt Lake City, UT, USA
| | - Kimiya Nourian
- Department of Sociology, University of Utah, Salt Lake City, UT, USA
| | - Alla Chernenko
- Department of Sociology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Nelson DR, Khraiwesh B, Fu W, Alseekh S, Jaiswal A, Chaiboonchoe A, Hazzouri KM, O'Connor MJ, Butterfoss GL, Drou N, Rowe JD, Harb J, Fernie AR, Gunsalus KC, Salehi-Ashtiani K. The genome and phenome of the green alga Chloroidium sp. UTEX 3007 reveal adaptive traits for desert acclimatization. eLife 2017. [PMID: 28623667 PMCID: PMC5509433 DOI: 10.7554/elife.25783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To investigate the phenomic and genomic traits that allow green algae to survive in deserts, we characterized a ubiquitous species, Chloroidium sp. UTEX 3007, which we isolated from multiple locations in the United Arab Emirates (UAE). Metabolomic analyses of Chloroidium sp. UTEX 3007 indicated that the alga accumulates a broad range of carbon sources, including several desiccation tolerance-promoting sugars and unusually large stores of palmitate. Growth assays revealed capacities to grow in salinities from zero to 60 g/L and to grow heterotrophically on >40 distinct carbon sources. Assembly and annotation of genomic reads yielded a 52.5 Mbp genome with 8153 functionally annotated genes. Comparison with other sequenced green algae revealed unique protein families involved in osmotic stress tolerance and saccharide metabolism that support phenomic studies. Our results reveal the robust and flexible biology utilized by a green alga to successfully inhabit a desert coastline. DOI:http://dx.doi.org/10.7554/eLife.25783.001 Single-celled green algae, also known as green microalgae, play an important role for the world’s ecosystems, in part, because they can harness energy from sunlight to produce carbon-rich compounds. Microalgae are also important for biotechnology and people have harnessed them to make food, fuel and medicines. Green microalgae live in many types of habitats from streams to oceans, and they can also be found on the land, including in deserts. Like plants that live in the desert, these microalgae have likely evolved specific traits that allow them to live in these hot and dry regions. Yet, fewer scientists have studied microalgae compared to land plants, and until now it was not well understood how microalgae could survive in the desert. Nelson et al. analyzed green microalgae from different locations around the United Arab Emirates and found that one microalga, known as Chloroidium, is one of the most dominant algae in this area. This included samples from beaches, mangroves, desert oases, buildings and public fresh water sources. Chloroidium has a unique set of genes and proteins and grew particularly well in freshwater and saltwater. Rather than just harnessing sunlight, the microalgae were able to consume over 40 different varieties of carbon sources to produce energy. The microalgae also accumulated oily molecules with a similar composition to palm oil, which may help this species to survive in desert regions. A next step will be to develop biotechnological assets based on the information obtained. In the future, microalgae could be used to make an oil that represents an alternative to palm oil; this would reduce the demand for palm tree plantations, which pose a major threat to the natural environment. Moreover, understanding how microalgae can colonize a desert region will help us to understand the effects of climate change in the region. DOI:http://dx.doi.org/10.7554/eLife.25783.002
Collapse
Affiliation(s)
- David R Nelson
- Laboratory of Algal, Synthetic, and Systems Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Basel Khraiwesh
- Laboratory of Algal, Synthetic, and Systems Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Weiqi Fu
- Laboratory of Algal, Synthetic, and Systems Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Ashish Jaiswal
- Laboratory of Algal, Synthetic, and Systems Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amphun Chaiboonchoe
- Laboratory of Algal, Synthetic, and Systems Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Khaled M Hazzouri
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Matthew J O'Connor
- Core Technology Platform, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Glenn L Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nizar Drou
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jillian D Rowe
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jamil Harb
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.,Department of Biology and Biochemistry, Birzeit University, Birzeit, Palestine
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Center for Genomics and Systems Biology and Department of Biology, New York University, New York, United States
| | - Kourosh Salehi-Ashtiani
- Laboratory of Algal, Synthetic, and Systems Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|