1
|
Tang XF, Guo XP, Kuang L, Chen XJ, Sidikjan N, Xu TT, Jiang S, Liu M, Hou LJ, Yang Y. Comammox Nitrospira are the dominant ammonia oxidizers in the Yangtze estuarine biofilms. WATER RESEARCH 2024; 273:122969. [PMID: 39689421 DOI: 10.1016/j.watres.2024.122969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Biofilms are indispensable ecological habitats for microbes that have garnered global attention and play a potential role in influencing the biogeochemical cycling of nitrogen. However, the biogeochemical significance of biofilms and the mechanisms by which they regulate nitrogen cycling remain elusive. In this study, we utilized DNA-stable isotope probing (DNA-SIP) labelling techniques in conjunction with metagenomics to reveal a nitrifying ecological niche in biofilms taken from the Yangtze Estuary, with those from sediment and water samples for comparison. Quantitative analysis showed that the amoA gene abundance of comammox Nitrospira (2.3 × 103 copies ng-1 DNA) was significantly higher than that of ammonia-oxidizing archaea (AOA-amoA, 62.4 copies ng-1 DNA) and ammonia-oxidizing bacteria (AOB-amoA, 218.1 copies ng-1 DNA) in biofilms, and the average abundance of comammox Nitrospira showed the following order: water > biofilm > sediment. Moreover, the NOB nxrB gene was more abundant than the amoA gene of ammonia oxidizers in all three media. DNA-SIP further revealed that the active comammox Nitrospira clade A mediates the nitrification process in biofilms with peak abundance at a buoyant density of 1.715 g mL-1. Active nitrifying bacteria exhibit metabolic diversity in both biofilms and sediments, and occupy unique nitrifying ecological niches. Additionally, the co-occurrence network showed that chlorophyll a, NO3- and salinity emerged as the predominant physicochemical factors affecting the nitrogen transformation genes in biofilms. Taken together, this study indicates that biofilms constitute an emerging nitrifying ecological niche in estuarine environments and deepens our understanding of the mechanisms by which biofilms function in marine biogeochemistry.
Collapse
Affiliation(s)
- Xiu-Feng Tang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Xing-Pan Guo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China; Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| | - Lu Kuang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xin-Jie Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Nazupar Sidikjan
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Ting-Ting Xu
- Nantong Secondary Vocational School of Jiangsu Province, No. 8 Tongning Street, Nantong, Jiangsu Province 226000, PR China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Yi Yang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China; Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| |
Collapse
|
2
|
Xing S, Cui Y, Zhang F, Su J, Xu K, Liu X, Chen Z, Zhao Y, Han M. Study of the zeolite-catalyzed isomerization of 1-methylnaphthalene. RSC Adv 2024; 14:38335-38344. [PMID: 39635358 PMCID: PMC11614096 DOI: 10.1039/d4ra05881j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
Isomerization of 1-methylnaphthalene (1-MN) to 2-methylnaphthalene (2-MN) is a crucial step in the production of 2,6-dimethylnaphthalene (2,6-DMN), which is an important raw material for polyethylene naphthalate (PEN). Herein, the isomerization of 1-MN was systemically investigated over beta zeolite. Firstly, reaction conditions were systemically optimized, by which enhanced catalytic performance was obtained. Thereafter, the effect of nitride on the catalytic performance was investigated using a series of characterization techniques and DFT calculations, revealing that firm adsorption of nitride on acid sites was the main reason for catalyst deactivation. Activity of the deactivated catalyst was difficult to recover via extraction with hot benzene. Fortunately, catalytic performance could be effectively recovered through coke-burning, wherein the framework and acid sites were well-preserved during calcination.
Collapse
Affiliation(s)
- Shiyong Xing
- Beijing Special Engineering Design and Research Institute Beijing 100028 China
| | - Yan Cui
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 P. R. China
- Petrochemical Research Institute, PetroChina Company Limited Beijing 100195 China
| | - Fenglin Zhang
- Beijing Special Engineering Design and Research Institute Beijing 100028 China
| | - Jianbin Su
- Beijing Special Engineering Design and Research Institute Beijing 100028 China
| | - Kan Xu
- Beijing Special Engineering Design and Research Institute Beijing 100028 China
| | - Xiaofei Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 P. R. China
| | - Ziheng Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 P. R. China
| | - Yuehua Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 P. R. China
| | - Minghan Han
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
3
|
Ji L, Zhang X, Zhu X, Gao B, Zhao R, Wu P. Novel insights into Feammox coupled with the NDFO: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175721. [PMID: 39181258 DOI: 10.1016/j.scitotenv.2024.175721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Ammonium oxidation coupled with Fe(III) reduction, known as Feammox, and nitrate-dependent ferrous oxidation (NDFO) are two processes that can be synergistically achieved through the Fe(III)/Fe(II) cycle. This integrated approach enables the simultaneous removal of ammonia nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) from wastewater, representing a novel method for complete nitrogen removal. This study presents a systematic and exhaustive examination of the Feammox-NDFO coupled process. An initial thorough exploration of the underlying mechanisms behind the coupling process is conducted, highlighting how the Fe(III)/Fe(II) cycle enables the concurrent occurrence of these reactions. Further, the functional microorganisms associated with and playing a crucial role in the Feammox-NDFO process are summarized. Next, the key influencing factors that govern the efficiency of the Feammox-NDFO process are explored. These include parameters such as pH, temperature, carbon source, iron source, nitrogen source, and various electron shuttles that may mediate electron transfer. Understanding the impact of these factors is essential for optimizing the process. The most recent trends and endeavors on the Feammox-NDFO coupling technology in wastewater treatment applications are also examined. This includes examining both laboratory-scale studies and field trials, highlighting their successes and challenges. Finally, an outlook is presented regarding the future advancement of the Feammox-NDFO technology. Areas of improvement and novel strategies that could further enhance the efficiency of simultaneous nitrogen removal from the iron cycle are discussed. In summary, this study aspires to offer a thorough comprehension of the Feammox-NDFO coupled process, with a focus on its mechanisms, influencing factors, applications, and prospects. It is anticipated to yield invaluable insights for the advancement of process optimization, thus sparking fresh ideas and strategies aimed at accomplishing the thorough elimination of nitrogen from wastewater via the iron cycle.
Collapse
Affiliation(s)
- Luomiao Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xurui Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bo Gao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rui Zhao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Ou Y, Wu M, Yu Y, Liu Z, Zhang Y, Yi N. Nitrogen utilization efficiency assessment during bioremediation of petroleum-contaminated loess soils: insights from metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135506. [PMID: 39151360 DOI: 10.1016/j.jhazmat.2024.135506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Nitrogen addition is commonly used to remediate total petroleum hydrocarbons (TPH) in petroleum-contaminated soils. However, acceptable exogenous nitrogen dosages and their utilization efficiency for the degradation of hydrocarbons in oil-polluted soils are not well understood. This study compared the hydrocarbon bioremediation capacity by applying different doses of NH4Cl as a stimulant in soils contaminated with TPH at 8553 and 17090 mg/kg. The results showed acceptable exogenous nitrogen levels ranging from 60 to 360 mg N/kg soil, and the optimal nitrogen dosage for TPH remediation was 136 mg N/kg in soils with different TPH concentrations. The nitrogen availability efficiency (NAE) and nitrogen polarization factor availability (NPFA) in the 136 mg N/kg addition treatments were 6.69 and 20.47 mg/mg in 8533 mg/kg TPH-polluted soil, and 6.03 and 31.11 mg/mg in 17090 mg/kg TPH-polluted soil, respectively. Metagenomic analysis revealed that the application of 136 mg/kg nitrogen facilitated ammonia oxidation and nitrite reduction to nitric oxide, and induced soil microorganisms to undergo regulatory or adaptive changes in energy supply and metabolic state, which could aid in restoring the ecological functions of petroleum-contaminated soils. These findings underscore that 136 mg/kg of nitrogen dosage application is optimal for remediation of petroleum-contaminated soils irrespective of the TPH concentrations. This exogenous nitrogen application dosage for TPH remediation aligns with the nitrogen requirements for crop growth in agriculture.
Collapse
Affiliation(s)
- Yawen Ou
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China
| | - Manli Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China.
| | - Ying Yu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China
| | - Zeliang Liu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China
| | - Yu Zhang
- Jinduicheng Molybdenum CO., Ltd., Xi'an 710077, China
| | - Ning Yi
- Jinduicheng Molybdenum CO., Ltd., Xi'an 710077, China
| |
Collapse
|
5
|
Xiang H, Hong Y, Wu J, Wang Y, Ye F, Hu Z, Qu Z, Long A. NosZ-II-type N 2O-reducing bacteria play dominant roles in determining the release potential of N 2O from sediments in the Pearl River Estuary, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121732. [PMID: 37116571 DOI: 10.1016/j.envpol.2023.121732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
The microbial reduction of N2O serves as a "gatekeeper" for N2O emissions, determining the flux of N2O release into the atmosphere. Estuaries are active regions for N2O emissions, but the microbial functions of N2O-reducing bacteria in estuarine ecosystems are not well understood. In this study, the 15N isotope tracer method, qPCR, and high-throughput sequencing were used to analyze N2O production, reduction, and emission processes in surface sediments of the Pearl River Estuary. The 15N isotope tracer experiment showed that the N2O production rates declined and the N2O reduction potential (Rr, the ratio of N2O reduction rates to N2O production rates) increased from upstream to downstream of the Pearl River Estuary, leading to a corresponding decrease of the N2O emission rates from upstream to downstream. The gene abundance ratio of nosZ/nir gradually increased from upstream to downstream and was negatively correlated with the water N2O saturation. The gene abundance of nosZ II was significantly higher than that of nosZ I in the estuary, and the nosZ II/nosZ I abundance ratio was positively correlated with N2O reduction potential. Furthermore, the community composition of NosZ-I- and NosZ-II-type N2O-reducing bacteria shifted from upstream to downstream. NosZ-II-type N2O-reducing bacteria, especially Myxococcales, Thiotrichales, and Gemmatimonadetes species, contributed to the high N2O reduction potential in the downstream. Our results suggest that NosZ-II-type N2O-reducing bacteria play a dominant role in determining the release potential of N2O from sediments in the Pearl River Estuary. This study provides a new insight into the function of microbial N2O reduction in estuarine ecosystems.
Collapse
Affiliation(s)
- Hua Xiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China; State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China.
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Fei Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Zheng Hu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Zhiming Qu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 10006, PR China
| | - Aimin Long
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
6
|
Coupling of Anammox Activity and PAH Biodegradation: Current Insights and Future Directions. Processes (Basel) 2023. [DOI: 10.3390/pr11020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anaerobic ammonium oxidation (anammox) has shown success in past years for the treatment of municipal and industrial wastewater containing inorganic nutrients (i.e., nitrogen). However, the increase in polycyclic aromatic hydrocarbon (PAH)-contaminated matrices calls for new strategies for efficient and environmentally sustainable remediation. Therefore, the present review examined the literature on the connection between the anammox process and PAHs using VOSviewer to shed light on the mechanisms involved during PAH biodegradation and the key factors affecting anammox bacteria. The scientific literature thoroughly discussed here shows that PAHs can be involved in nitrogen removal by acting as electron donors, and their presence does not adversely affect the anammox bacteria. Anammox activity can be improved by regulating the operating parameters (e.g., organic load, dissolved oxygen, carbon-to-nitrogen ratio) and external supplementation (i.e., calcium nitrate) that promote changes in the microbial community (e.g., Candidatus Jettenia), favoring PAH degradation. The onset of a synergistic dissimilatory nitrate reduction to ammonium and partial denitrification can be beneficial for PAH and nitrogen removal.
Collapse
|
7
|
Liu H, Wu M, Gao H, Gao J, Wang S. Application of 15N tracing and bioinformatics for estimating microbial-mediated nitrogen cycle processes in oil-contaminated soils. ENVIRONMENTAL RESEARCH 2023; 217:114799. [PMID: 36384190 DOI: 10.1016/j.envres.2022.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Crude oil pollution can profoundly alter the nitrogen (N) cycle in the soil. Here, a 30-day incubation with 15N tracer approach was performed to assess the impacts of crude oil concentrations (medium: 10,000 mg kg-1; heavy: 50,000 mg kg-1) on soil N cycling based on a numerical model. Results showed that crude oil pollution significantly increased the gross N-transformation rates, but the rates of oxidation of recalcitrant organic N, the immbolization of NO3- and the adsorption of NH4+ changed differently as a function of hydrocarbon concentrations. There was no significant difference of the oxidation rate of recalcitrant organic N between the medium and heavy oil-contaminated soils (medium: 0.1149 mmol N kg-1 d-1; heavy: 0.1299 mmol N kg-1 d-1), but the rates of NO3- immobilization (0.1135 mmol N kg-1 d-1) and NH4+ adsorption were the highest (0.1148 mmol N kg-1 d-1) in the moderately oil-contaminated soils than those in the heavy polluted soil (0.0849 mmol N kg-1 d-1 and 0.0034 mmol N kg-1 d-1, respectively). The NO3- immobilization rate was 2.5-fold higher than its reduction rate, indicating that NO3- immobilization played a more important role during the process of NO3- transformation. Microbial community structure analysis indicated that phyla of Actinobacteria and Ascomycota respectively promoted the immobilization of NO3- to recalcitrant organic N and the reduction of NO3- to NH4+. The genus of Aspergillus was related to net NH4+ production, and the genera of Penicillium and Acremonium were responsible for oxidation of recalcitrant organic N to NO3-.
Collapse
Affiliation(s)
- Heng Liu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Manli Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China.
| | - Huan Gao
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinghua Gao
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - ShiJie Wang
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
8
|
Zhao M, Tang X, Sun D, Hou L, Liu M, Zhao Q, Klümper U, Quan Z, Gu JD, Han P. Salinity gradients shape the nitrifier community composition in Nanliu River Estuary sediments and the ecophysiology of comammox Nitrospira inopinata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148768. [PMID: 34247082 DOI: 10.1016/j.scitotenv.2021.148768] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The recent discovery of complete ammonia oxidizers (comammox), which convert ammonia to nitrate in a single organism, revolutionized the conventional understanding that two types of nitrifying microorganisms have to be involved in the nitrification process for more than 100 years. However, how different types of nitrifiers in response to salinity change remains largely unclear. This study not only investigated nitrifier community (including ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), comammox and nitrite-oxidizing Nitrospira) in the Nanliu estuary to find the ecological relationship between salinity and functional communities and also studied the physiology of a typical comammox Nitrospira inopinata in response to a salinity gradient. Based on sequences retrieved with four sets of functional gene primes, comammox Nitrospira was in general, mainly composed of clade A, with a clear separation of clade A1 subgroup in all samples and clade A2 subgroup in low salinity ones. As expected, group I.1b and group I.1a AOA dominated the AOA community in low- and high-salinity samples, respectively. Nitrosomonas-AOB were detected in all samples while Nitrosospira-AOB were mainly found in relatively high-salinity samples. Regarding general Nitrospira, lineages II and IV were the major groups in most of the samples, while lineage I Nitrospira was only detected in low-salinity samples. Furthermore, the comammox pure culture of N. inopinata showed an optimal salinity at 0.5‰ and ceased to grow at 12.8‰ for ammonia oxidation, but remained active for nitrite oxidation. These results show new evidence regarding niche specificity of different nitrifying microorganisms modulated mainly by salinity, and also a clear response by comammox N. inopinata to a wide range of simulated salinity levels.
Collapse
Affiliation(s)
- Mengyue Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dongyao Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Qiang Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Uli Klümper
- Institute for Hydrobiology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhexue Quan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
9
|
Zhao Y, Chen W, Wen D. The effects of crude oil on microbial nitrogen cycling in coastal sediments. ENVIRONMENT INTERNATIONAL 2020; 139:105724. [PMID: 32305744 DOI: 10.1016/j.envint.2020.105724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Crude oil could affect certain critical microbial processes of nitrogen cycling (N-cycling) in coastal sediments, and disturb the nitrogen balance. However, the understanding of the effects of crude oil on coastal sediments N-cycling under human disturbance was still limited. In this study, two sediments (named SY and HB with heavy and slight pollution, respectively) were sampled from Hangzhou Bay, China. After an incubation with exposure to different amounts of crude oil in above two sediments for 30 days, we found that crude oil affected microbial N-cycling in multiple levels. Potential rate measurements revealed that crude oil stimulated potential denitrification and N2O emissions in both sediments, which showed a higher influence on denitrification rates in higher concentration of oil. Quantitative PCR revealed that crude oil greatly increased abundances of bacterial and archaeal 16S rRNA genes and N-cycling genes (nirS, nosZ, nrfA, part of AOA and AOB amoA). On the other hand, only a few genes (16S rRNA and nrfA) showed higher transcriptional activities in oil-addition treatments. Results about relative changes of N-cycling genes revealed that the variations of N-cycling genes in oil-addition treatments were related to sediment types but not crude oil concentrations, and the genes in HB were more sensitive to crude oil than SY. Network analysis of N-cycling genes found that crude oil decreased the complexity of N-cycling gene networks in SY, while increased complexity in HB, and led to more competition among N-cycling microbes. Our findings help to look into the effects of crude oil on key N-cycling processes, and improve the understanding of the interactions among N-cycling under crude oil contamination.
Collapse
Affiliation(s)
- Yanan Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weidong Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Urakawa H, Rajan S, Feeney ME, Sobecky PA, Mortazavi B. Ecological response of nitrification to oil spills and its impact on the nitrogen cycle. Environ Microbiol 2018; 21:18-33. [DOI: 10.1111/1462-2920.14391] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/11/2018] [Accepted: 08/17/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Hidetoshi Urakawa
- Department of Marine and Ecological Sciences Florida Gulf Coast University Fort Myers FL, 33965 USA
| | - Suja Rajan
- Department of Biological Sciences University of Alabama Tuscaloosa AL, 35487 USA
| | - Megan E. Feeney
- Department of Marine and Ecological Sciences Florida Gulf Coast University Fort Myers FL, 33965 USA
| | - Patricia A. Sobecky
- Department of Biological Sciences University of Alabama Tuscaloosa AL, 35487 USA
| | - Behzad Mortazavi
- Department of Biological Sciences University of Alabama Tuscaloosa AL, 35487 USA
- Dauphin Island Sea Lab Dauphin Island AL, 36528 USA
| |
Collapse
|
11
|
Ribeiro H, de Sousa T, Santos JP, Sousa AGG, Teixeira C, Monteiro MR, Salgado P, Mucha AP, Almeida CMR, Torgo L, Magalhães C. Potential of dissimilatory nitrate reduction pathways in polycyclic aromatic hydrocarbon degradation. CHEMOSPHERE 2018; 199:54-67. [PMID: 29428516 DOI: 10.1016/j.chemosphere.2018.01.171] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
This study investigates the potential of an indigenous estuarine microbial consortium to degrade two polycyclic aromatic hydrocarbons (PAHs), naphthalene and fluoranthene, under nitrate-reducing conditions. Two physicochemically diverse sediment samples from the Lima Estuary (Portugal) were spiked individually with 25 mg L-1 of each PAH in laboratory designed microcosms. Sediments without PAHs and autoclaved sediments spiked with PAHs were run in parallel. Destructive sampling at the beginning and after 3, 6, 12, 30 and 63 weeks incubation was performed. Naphthalene and fluoranthene levels decreased over time with distinct degradation dynamics varying with sediment type. Next-generation sequencing (NGS) of 16 S rRNA gene amplicons revealed that the sediment type and incubation time were the main drivers influencing the microbial community structure rather than the impact of PAH amendments. Predicted microbial functional analyses revealed clear shifts and interrelationships between genes involved in anaerobic and aerobic degradation of PAHs and in the dissimilatory nitrate-reducing pathways (denitrification and dissimilatory nitrate reduction to ammonium - DNRA). These findings reinforced by clear biogeochemical denitrification signals (NO3- consumption, and NH4+ increased during the incubation period), suggest that naphthalene and fluoranthene degradation may be coupled with denitrification and DNRA metabolism. The results of this study contribute to the understanding of the dissimilatory nitrate-reducing pathways and help uncover their involvement in degradation of PAHs, which will be crucial for directing remediation strategies of PAH-contaminated anoxic sediments.
Collapse
Affiliation(s)
- Hugo Ribeiro
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Trelita de Sousa
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - João P Santos
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - António G G Sousa
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Catarina Teixeira
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar (ICBAS-UP), Universidade do Porto, Porto, Portugal
| | - Maria R Monteiro
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Paula Salgado
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar (ICBAS-UP), Universidade do Porto, Porto, Portugal
| | - Ana P Mucha
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - C Marisa R Almeida
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Luís Torgo
- FCUP - Faculdade de Ciências da Universidade do Porto, Porto, Portugal; Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Catarina Magalhães
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Ding B, Li Z, Qin Y. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:379-386. [PMID: 28818813 DOI: 10.1016/j.envpol.2017.08.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Anaerobic ammonium oxidation coupled to iron(III) reduction (termed Feammox) is a recently discovered pathway of nitrogen cycling. However, little is known about the pathways of N transformation via Feammox process in riparian zones. In this study, evidence for Feammox in riparian zones with or without vegetation cover was demonstrated using isotope tracing technique and high-throughput sequencing technology. The results showed that Feammox could occur in riparian zones, and demonstrated that N2 directly from Feammox was dominant Feammox pathway. The Feammox rates in vegetated soil samples was 0.32-0.37 mg N kg-1 d-1, which is higher than that in un-vegetated soil samples (0.20 mg N kg-1 d-1). Moreover, the growth of vegetation led to a 4.99-6.41% increase in the abundance of iron reducing bacteria (Anaeromyxobacter, Pseudomonas and Geobacter) and iron reducing bacteria play an essential role in Feammox process. An estimated loss of 23.7-43.9 kg N ha-1 year-1 was associated with Feammox in the examined riparian zone. Overall, the co-occurrence of ammonium oxidation and iron reduction suggest that Feammox can play an essential role in the pathway of nitrogen removal in riparian zones.
Collapse
Affiliation(s)
- Bangjing Ding
- State Key Laboratory of Pollutant Control and Resource Reuse, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollutant Control and Resource Reuse, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yunbin Qin
- State Key Laboratory of Pollutant Control and Resource Reuse, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Du C, Cui CW, Qiu S, Shi SN, Li A, Ma F. Nitrogen removal and microbial community shift in an aerobic denitrification reactor bioaugmented with a Pseudomonas strain for coal-based ethylene glycol industry wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11435-11445. [PMID: 28316045 DOI: 10.1007/s11356-017-8824-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
An aerobic denitrification system, initially bioaugmented with Pseudomonas strain T13, was established to treat coal-based ethylene glycol industry wastewater, which contained 3219 ± 86 mg/L total nitrogen (TN) and 1978 ± 14 mg/L NO3--N. In the current study, a stable denitrification efficiency of 53.7 ± 4.7% and nitrite removal efficiency of 40.1 ± 2.7% were achieved at different diluted influent concentrations. Toxicity evaluation showed that a lower toxicity of effluent was achieved when industry wastewater was treated by stuffing biofilm communities compared to suspended communities. Relatively high TN removal (~50%) and chemical oxygen demand removal percentages (>65%) were obtained when the influent concentration was controlled at below 50% of the raw industry wastewater. However, a further increased concentration led to a 20-30% decrease in nitrate and nitrite removal. Microbial network evaluation showed that a reduction in Pseudomonas abundance was induced during the succession of the microbial community. The napA gene analysis indicated that the decrease in nitrate and nitrite removal happened when abundance of Pseudomonas was reduced to less than 10% of the overall stuffing biofilm communities. Meanwhile, other denitrifying bacteria, such as Paracoccus, Brevundimonas, and Brucella, were subsequently enriched through symbiosis in the whole microbial network.
Collapse
Affiliation(s)
- Cong Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Chong-Wei Cui
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China.
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Sheng-Nan Shi
- School of Life Science, Liaoning Normal University, Dalian, 116029, China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China.
| |
Collapse
|