1
|
Xu W, Chang M, Li J, Li M, Stoks R, Zhang C. Local thermal adaption mediates the sensitivity of Daphnia magna to nanoplastics under global warming scenarios. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134921. [PMID: 38909466 DOI: 10.1016/j.jhazmat.2024.134921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
The toxicity of nanoplastics at environmentally relevant concentrations has received widespread attention in the context of global warming. Despite numerous studies on the impact of mean temperature (MT), the effects of daily temperature fluctuations (DTFs) on the ecotoxicity of nanoplastics remains largely unexplored. Moreover, the role of evolutionary adaptation in assessing long-term ecological risks is unclear. Here, we investigated the effects of polystyrene nanoplastics (5 μg L-1) on Daphnia magna under varying MT (20 °C and 24 °C) and DTFs (0 °C, 5 °C, and 10 °C). Capitalizing on a space-for-time substitution approach, we further assessed how local thermal adaptation affect the sensitivity of Daphnia to nanoplastics under global warming. Our results indicated that nanoplastics exposure in general reduced heartbeat rate, thoracic limb activity and feeding rate, and increased CytP450, ETS activity and Hgb concentrations. Higher MT and DTFs enhanced these effects. Notably, clones originating from their respective sites performed better under their native temperature conditions, indicating local thermal adaptation. Warm-adapted low-latitude D. magna showed stronger nanoplastics-induced increases in CytP450, ETS activity and Hgb concentrations under local MT 24 °C, while cold-adapted high-latitude D. magna showed stronger nanoplastics-induced decreases in heartbeat rate, thoracic limb activity and feeding rate under high MT than under low MT.
Collapse
Affiliation(s)
- Wencheng Xu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mengjie Chang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jingzhen Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mingyang Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven B-3000, Belgium
| | - Chao Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Grunst ML, Grunst AS, Grémillet D, Fort J. Combined threats of climate change and contaminant exposure through the lens of bioenergetics. GLOBAL CHANGE BIOLOGY 2023; 29:5139-5168. [PMID: 37381110 DOI: 10.1111/gcb.16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
3
|
Xing K, Zhang SM, Jia MQ, Zhao F. Response of wheat aphid to insecticides is influenced by the interaction between temperature amplitudes and insecticide characteristics. Front Physiol 2023; 14:1188917. [PMID: 37168226 PMCID: PMC10165072 DOI: 10.3389/fphys.2023.1188917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Climate change not only directly affects the phenotype of organisms but also indirectly impacts their physiology, for example, by altering their susceptibility to insecticides. Changed diurnal temperature fluctuations are an important aspect of climate change; ignoring the impact of these fluctuations on the biological effects of various chemical insecticides can lead to inaccurate assessments of insecticide risk under the current and future climate change scenarios. Methods: In this study, we studied effects of different temperature amplitudes (± 0, ± 6, ± 12°C) at the same mean temperature (22°C) on the life history traits of a globally distributed pest (Sitobion avenae, wheat aphid), in response to low doses of two insecticides. The first, imidacloprid shows a positive temperature coefficient; the second, beta-cypermethrin has a negative temperature coefficient. Results: Compared with the results seen with the constant temperature (22°C), a wide temperature amplitude (± 12°C) amplified the negative effects of imidacloprid on the survival, longevity, and fecundity of S. avenae, but significantly increased the early fecundity of the wheat aphid. Beta-cypermethrin positively impacted the wheat aphid at all temperature amplitudes studied. Specifically, beta-cypermethrin significantly increased the survival, longevity, and fecundity of S. avenae under medium temperature amplitude (± 6°C). There were no significant differences in the survival, longevity, and the early fecundity of S. avenae when it was treated with beta-cypermethrin at the wide temperature amplitude (± 12°C). However, the negative effect of beta-cypermethrin on the intrinsic rate of increase of S. avenae decreased gradually with the increase in temperature amplitude. Discussion: In conclusion, the response of S. avenae to positive temperature coefficient insecticides was markedly affected by temperature amplitude, while negative temperature coefficient insecticides increased the environmental adaptability of S. avenae to various temperature amplitudes. Our results highlight the importance of the integrated consideration of diurnal temperature fluctuations and different temperature coefficient insecticide interactions in climate-change-linked insecticide risk assessment; these results emphasize the need for a more fine-scale approach within the context of climate change and poison sensitivity.
Collapse
Affiliation(s)
- Kun Xing
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang, China
| | - Shu-Ming Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang, China
| | - Mei-Qi Jia
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang, China
| | - Fei Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang, China
- *Correspondence: Fei Zhao,
| |
Collapse
|
4
|
Pottier P, Burke S, Zhang RY, Noble DWA, Schwanz LE, Drobniak SM, Nakagawa S. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecol Lett 2022; 25:2245-2268. [PMID: 36006770 DOI: 10.1111/ele.14083] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Understanding the factors affecting thermal tolerance is crucial for predicting the impact climate change will have on ectotherms. However, the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood. Here, we meta-analyse how thermal tolerance is initially and persistently impacted by early (embryonic and juvenile) thermal environments by using data from 150 experimental studies on 138 ectothermic species. Thermal tolerance only increased by 0.13°C per 1°C change in developmental temperature and substantial variation in plasticity (~36%) was the result of shared evolutionary history and species ecology. Aquatic ectotherms were more than three times as plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more heterogenous plasticity than older life stages, with numerous responses appearing as non-adaptive. While developmental temperatures did not have persistent effects on thermal tolerance overall, persistent effects were vastly under-studied, and their direction and magnitude varied with ontogeny. Embryonic stages may represent a critical window of vulnerability to changing environments and we urge researchers to consider early life stages when assessing the climate vulnerability of ectotherms. Overall, our synthesis suggests that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Burke
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Rose Y Zhang
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Nie Y, Wang Z, Yu S, Liu Y, Zhang L, Liu R, Zhou Z, Zhu W, Diao J. Combined effects of abamectin and temperature on the physiology and behavior of male lizards (Eremias argus): Clarifying adaptation and maladaptation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155794. [PMID: 35550905 DOI: 10.1016/j.scitotenv.2022.155794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Chemical pollution and global warming are two major threats to organisms, which can interact to affect the normal activities of living beings. In this study, to explore the effects of abamectin and high temperature on adaptability of lizard, male adult Eremias argus (a native Chinese lizard) were exposed to environmentally relevant concentrations of abamectin (0.02 mg·L-1 and 2 mg·L-1) and different temperature (26 °C and 32 °C) for 30 days. The fitness-related behaviors (locomotion, predation, and thermoregulation) of lizards were evaluated. Physiological effects were addressed using biochemical biomarkers related to oxidative stress, detoxification, and neurotransmitter content. The results showed that abamectin could affect the neurotransmitter systems, cause oxidative stress, and alters lizard locomotion and predation-related behaviors of lizards, but lizards up-regulating detoxification metabolic enzymes, exhibiting higher body temperature preference to alleviate the toxicity of abamectin, and compensate the increased energy demand for detoxification and repair damage by increasing food intake. After exposure to high temperature, lizards showed adaptation to high temperature (higher body temperature preference), the thermal compensation mechanisms may involve elevated Hsp70 levels and increased food intake. At the combined effects of abamectin and high temperature, more obvious behavioral disorders and more severe oxidative stress were observed, although lizards avoided the negative effects of overheating and pollutants by seeking thermal shelter and reducing energy expenditure, this may subsequently reduce foraging opportunities and the ability to obtain energy needed for vital physiological functions (i.e., growth, maintenance, and reproduction). From a long-term perspective, these short-term adaptive strategies will be detrimental to individual long-term survival and population sustainability, and may transformed into maladaptation.
Collapse
Affiliation(s)
- Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Luyao Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
6
|
Joncour B, Nelson WA. Sublethal concentration of insecticide amplifies interference competition in a tortrix moth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112324. [PMID: 34015630 DOI: 10.1016/j.ecoenv.2021.112324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Insecticides are extensively used worldwide to kill insect pests, yet organisms are most often exposed to insecticides at sublethal concentrations. Our understanding of sublethal effects on life histories is needed to predict the impact of insecticides on population dynamics and improve insecticide use and pest control. Sublethal concentrations can impact life histories directly and indirectly through changes in the intraspecific competition. Yet, few studies have evaluated the sublethal effects on intraspecific competition and these do not disentangle the insecticide effects on interference competition versus exploitative competition. As such, sublethal effects on the relative contribution of each pathways in shaping life histories are largely unknown, despite the fact that this can impact population dynamics. In this study, we focused on the neurotoxic insecticide spinosad and investigated its sublethal effects on interference among the aggressive larvae of the tortrix moth Adoxophyes honmai and the consequences for life histories. We conducted a set of paired experiments to disentangle the insecticide effects on interference from the ones on exploitation. Spinosad was found to amplify interference with most effects on mortality which lets us suggest that the insecticide likely increases the level of aggressive interactions resulting in more conspecific killings (e.g. cannibalism). Spinosad exposure was found to impair movement ability. Less movements may increase susceptibility to conspecific attacks and or increase aggresivity for better defence, two plausible mechanisms that could explain the increase in interference with insecticide. This study shows that insecticide at sublethal concentration can impact life histories by altering the strength of interference competition. Many organisms (pest and non-target species) compete through interference and theory predicts that a change in interference can substantially change dynamics. Our finding therefore reveals the importance of assessing the effect of insecticides on the mechanisms of competition when predicting their impact on populations.
Collapse
Affiliation(s)
- Barbara Joncour
- Department of Biology, Queen's University, 116 Barrie Street, Kingston K7L 3N6, ON, Canada.
| | - William A Nelson
- Department of Biology, Queen's University, 116 Barrie Street, Kingston K7L 3N6, ON, Canada
| |
Collapse
|
7
|
Meng S, Delnat V, Stoks R. Mosquito larvae that survive a heat spike are less sensitive to subsequent exposure to the pesticide chlorpyrifos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114824. [PMID: 32454381 DOI: 10.1016/j.envpol.2020.114824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/10/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
While extreme high temperatures are an important aspect of global warming, their effects on organisms are relatively understudied, especially in ecotoxicology. Sequential exposure to heat spikes and pesticides is a realistic scenario as both are typically transient stressors and are expected to further increase in frequency under global warming. We tested the effects of exposure to a lethal heat spike and subsequently to an ecologically relevant lethal pulse exposure of the pesticide chlorpyrifos in the larvae of mosquito Culex pipiens. The heat spike caused direct and delayed mortality, and resulted in a higher heat tolerance and activity of acetylcholinesterase, and a lower fat content in the survivors. The chlorpyrifos exposure caused mortality, accelerated growth rate, and decreased the heat tolerance and the activity of acetylcholinesterase. The preceding heat spike did not change how chlorpyrifos reduced the heat tolerance. Notably, the preceding heat spike did lower the lethal effect of the pesticide, which makes an important novel finding at the interface of ecotoxicology and global change biology, and adds a new dimension to the "climate-induced toxicant sensitivity" (CITS) concept. This may be due to both survival selection and cross-tolerance, and therefore likely a widespread phenomenon. Our results emphasize the importance of including extreme high temperatures as an important transient global change stressor in ecotoxicology.
Collapse
Affiliation(s)
- Shandong Meng
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| |
Collapse
|
8
|
Tüzün N, De Block M, Stoks R. Live fast, die old: oxidative stress as a potential mediator of an unexpected life‐history evolution. OIKOS 2020. [DOI: 10.1111/oik.07183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Deberiotstraat 32 BE‐3000 Leuven Belgium
| | - Marjan De Block
- Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Deberiotstraat 32 BE‐3000 Leuven Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Deberiotstraat 32 BE‐3000 Leuven Belgium
| |
Collapse
|
9
|
Delnat V, Tran TT, Verheyen J, Van Dinh K, Janssens L, Stoks R. Temperature variation magnifies chlorpyrifos toxicity differently between larval and adult mosquitoes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1237-1244. [PMID: 31470486 DOI: 10.1016/j.scitotenv.2019.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 05/12/2023]
Abstract
To improve risk assessment there is increasing attention for the effect of climate change on the sensitivity to contaminants and vice versa. Two important and connected topics have been largely ignored in this context: (i) the increase of daily temperature variation (DTV) as a key component of climate change, and (ii) differences in sensitivity to climate change and contaminants between developmental stages. We therefore investigated whether DTV magnified the negative effects of the organophosphate insecticide chlorpyrifos on mortality and heat tolerance and whether this effect was stronger in aquatic larvae than in terrestrial adults of the mosquito Culex pipiens. Exposure to chlorpyrifos at a constant temperature imposed mortality and reduced the heat tolerance in both larvae and adult males, but not in adult females. This provides the first evidence that the TICS ("toxicant-induced climate change sensitivity") concept can be sex-specific. DTV had no direct negative effects. Yet, consistent with the CITS ("climate-induced toxicant sensitivity") concept, DTV magnified the toxicity of the pesticide in terms of larval mortality. This was not the case in the adult stage indicating the CITS concept to be dependent on the developmental stage. Notably, chlorpyrifos reduced the heat tolerance of adult females only in the presence of DTV, thereby providing support for the reciprocal effects between DTV and contaminants, hence the coupling of the TICS and CITS concepts. Taken together, our results highlight the importance of integrating DTV and the developmental stage to improve risk assessment of contaminants under climate change.
Collapse
Affiliation(s)
- Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Tam T Tran
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium; Institute of Aquaculture, Nha Trang University, Khanh Hoa, Viet Nam.
| | - Julie Verheyen
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Khuong Van Dinh
- Institute of Aquaculture, Nha Trang University, Khanh Hoa, Viet Nam.
| | - Lizanne Janssens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| |
Collapse
|
10
|
Emberts Z, Escalante I, Bateman PW. The ecology and evolution of autotomy. Biol Rev Camb Philos Soc 2019; 94:1881-1896. [PMID: 31240822 DOI: 10.1111/brv.12539] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 01/29/2023]
Abstract
Autotomy, the self-induced loss of a body part, occurs throughout Animalia. A lizard dropping its tail to escape predation is an iconic example, however, autotomy occurs in a diversity of other organisms. Octopuses can release their arms, crabs can drop their claws, and bugs can amputate their legs. The diversity of organisms that can autotomize body parts has led to a wealth of research and several taxonomically focused reviews. These reviews have played a crucial role in advancing our understanding of autotomy within their respective groups. However, because of their taxonomic focus, these reviews are constrained in their ability to enhance our understanding of autotomy. Here, we aim to synthesize research on the ecology and evolution of autotomy throughout Animalia, building a unified framework on which future studies can expand. We found that the ability to drop an appendage has evolved multiple times throughout Animalia and that once autotomy has evolved, selection appears to act on the removable appendage to increase the efficacy and/or efficiency of autotomy. This could explain why some autotomizable body parts are so elaborate (e.g. brightly coloured). We also show that there are multiple benefits, and variable costs, associated with autotomy. Given this variation, we generate an economic theory of autotomy (modified from the economic theory of escape) which makes predictions about when an individual should resort to autotomy. Finally, we show that the loss of an autotomizable appendage can have numerous consequences on population and community dynamics. By taking this broad taxonomic approach, we identified patterns of autotomy that transcend specific lineages and highlight clear directions for future research.
Collapse
Affiliation(s)
- Zachary Emberts
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL, 32611, USA
| | - Ignacio Escalante
- Department of Environmental Sciences, Policy, & Management, University of California, 140 Mulford Hall, Berkeley, CA, 94720, USA
| | - Philip W Bateman
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia
| |
Collapse
|
11
|
Verheyen J, Delnat V, Stoks R. Increased Daily Temperature Fluctuations Overrule the Ability of Gradual Thermal Evolution to Offset the Increased Pesticide Toxicity under Global Warming. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4600-4608. [PMID: 30921514 DOI: 10.1021/acs.est.8b07166] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The widespread evidence that global warming can increase species sensitivities to chemical toxicants, and vice versa, and the recent insight that thermal evolution may mitigate these effects is crucial to predict the future impact of toxicants in a warming world. Nevertheless, a major component of global warming, the predicted increase in daily temperature fluctuations (DTFs), has been ignored at the interface of evolutionary ecotoxicology and global change biology. We studied whether 4 °C warming and a 5 °C DTF increase (to 10 °C DTF) magnified the negative impact of the insecticide chlorpyrifos (CPF) in larvae of low- and high-latitude populations of the damselfly Ischnura elegans. While 4 °C warming only increased CPF-induced mortality in high-latitude larvae, the high (10 °C) DTF increased CPF-induced larval mortality at both latitudes. CPF reduced the heat tolerance; however, this was buffered by latitude-specific thermal adaptation to both mean temperature and DTF. Integrating our results in a space-for-time substitution indicated that gradual thermal evolution in high-latitude larvae may offset the negative effects of CPF on heat tolerance under warming, unless the expected DTF increase is taken into account. Our results highlight the crucial importance of jointly integrating DTFs and thermal evolution to improve risk assessment of toxicants under global warming.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology , University of Leuven , Charles Deberiotstraat 32 , B-3000 Leuven , Belgium
| | - Vienna Delnat
- Evolutionary Stress Ecology and Ecotoxicology , University of Leuven , Charles Deberiotstraat 32 , B-3000 Leuven , Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology , University of Leuven , Charles Deberiotstraat 32 , B-3000 Leuven , Belgium
| |
Collapse
|
12
|
Rodrigues ACM, Bordalo MD, Golovko O, Koba O, Barata C, Soares AMVM, Pestana JLT. Combined effects of insecticide exposure and predation risk on freshwater detritivores. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:794-802. [PMID: 29313302 DOI: 10.1007/s10646-017-1887-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Insecticides usually present in low concentrations in streams are known to impair behaviour and development of non-target freshwater invertebrates. Moreover, there is growing awareness that the presence of natural stressors, such as predation risk may magnify the negative effects of pesticides. This is because perception of predation risk can by itself lead to changes on behaviour and physiology of prey species. To evaluate the potential combined effects of both stressors on freshwater detritivores we studied the behavioural and developmental responses of Chironomus riparius to chlorantraniliprole (CAP) exposure under predation risk. Also, we tested whether the presence of a shredder species would alter collector responses under stress. Trials were conducted using a simplified trophic chain: Alnus glutinosa leaves as food resource, the shredder Sericostoma vittatum and the collector C. riparius. CAP toxicity was thus tested under two conditions, presence/absence of the dragonfly predator Cordulegaster boltonii. CAP exposure decreased leaf decomposition. Despite the lack of significance for interactive effects, predation risk marginally modified shredder effect on leaf decomposition, decreasing this ecosystem process. Shredders presence increased leaf decomposition, but impaired chironomids performance, suggesting interspecific competition rather than facilitation. C. riparius growth rate was decreased independently by CAP exposure, presence of predator and shredder species. A marginal interaction between CAP and predation risk was observed regarding chironomids development. To better understand the effects of chemical pollution to natural freshwater populations, natural stressors and species interactions must be taken into consideration, since both vertical and horizontal species interactions play their role on response to stress.
Collapse
Affiliation(s)
- Andreia C M Rodrigues
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
- Department of Environmental Chemistry (IDAEA-CSIC), Barcelona, Spain
| | - Maria D Bordalo
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Oksana Golovko
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Olga Koba
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Carlos Barata
- Department of Environmental Chemistry (IDAEA-CSIC), Barcelona, Spain
| | | | - João L T Pestana
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
13
|
Janssens L, Verberk W, Stoks R. A widespread morphological antipredator mechanism reduces the sensitivity to pesticides and increases the susceptibility to warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:1230-1235. [PMID: 29898530 DOI: 10.1016/j.scitotenv.2018.01.179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Pollution and predation are two omnipresent stressors in aquatic systems that can interact in multiple ways, thereby challenging accurate assessment of the effects of pollutants in natural systems. Despite the widespread occurrence of morphological antipredator mechanisms, no studies have tested how these can affect the sensitivity of prey to pesticides. Sensitivity to pesticides is typically measured via reductions in growth rates and survival, but also reductions in heat tolerance are to be expected and are becoming increasingly important in a warming world. We investigated how autotomy, a widespread morphological antipredator mechanism where animals sacrifice a body part (here the caudal lamellae) to escape when attacked by a predator, modified the sensitivity to the insecticide chlorpyrifos in larvae of the damselfly Coenagrion puella. Exposure to chlorpyrifos reduced the growth rate and heat tolerance (measured as CTmax). A key finding was that the pesticide had a greater impact on growth rates of intact animals, i.e. those that retained their lamellae. This reduced sensitivity to chlorpyrifos in animals without lamellae can be explained by the reduced outer surface area which is expected to result in a lower uptake of the pesticide. Larvae that underwent autotomy exhibited a lower heat tolerance, which may also be explained by the reduced surface area and the associated reduction in oxygen uptake. There is a wide diversity of morphological antipredator mechanisms, suggesting that there will be more examples where these mechanisms affect the vulnerability to pollutants. Given the importance of pollution and predation as structuring forces in aquatic food webs, exploring the potential interactions between morphological antipredator mechanisms and sensitivity to pollutants will be crucial for risk assessment of pollutants in aquatic systems.
Collapse
Affiliation(s)
- Lizanne Janssens
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium.
| | - Wilco Verberk
- Animal Ecology and Physiology, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands.
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium.
| |
Collapse
|
14
|
Philippe C, Gregoir AF, Thoré ESJ, De Boeck G, Brendonck L, Pinceel T. Protocol for Acute and Chronic Ecotoxicity Testing of the Turquoise Killifish Nothobranchius furzeri. J Vis Exp 2018. [PMID: 29757283 DOI: 10.3791/57308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The killifish Nothobranchius furzeri is an emerging model organism in the field of ecotoxicology and its applicability in acute and chronic ecotoxicity testing has been demonstrated. Overall, the sensitivity of the species to toxic compounds is in the range with, or higher than, that of other model species. This work describes protocols for acute, chronic, and multigenerational bioassays of single and combined stressor effects on N. furzeri. Due to its short maturation time and life-cycle, this vertebrate model allows the study of endpoints such as maturation time and fecundity within four months. Transgenerational full life-cycle exposure trials can be performed in as little as 8 months. Since this species produces eggs that are drought-resistant and remain viable for years, the on-site culture of the species is not needed but individuals can be recruited when required. The protocols are designed to measure life-history traits (mortality, growth, fecundity, weight) and critical thermal maximum.
Collapse
Affiliation(s)
- Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, University of Leuven; Systemic Physiological and Ecotoxicological Research, University of Antwerp;
| | - Arnout F Gregoir
- Animal Ecology, Global Change and Sustainable Development, University of Leuven
| | - Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, University of Leuven
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, University of Antwerp
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, University of Leuven; Water Research Group, Unit for Environmental Sciences and Management, North-West University
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, University of Leuven; Centre for Environmental Management, University of the Free State
| |
Collapse
|