1
|
Aschner M, Skalny AV, Lu R, Martins AC, Tsatsakis A, Miroshnikov SA, Santamaria A, Tinkov AA. Molecular mechanisms of zinc oxide nanoparticles neurotoxicity. Chem Biol Interact 2024; 403:111245. [PMID: 39278458 DOI: 10.1016/j.cbi.2024.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely used in industry and biomedicine. A growing body of evidence demonstrates that ZnONPs exposure may possess toxic effects to a variety of tissues, including brain. Therefore, the objective of the present review was to summarize existing evidence on neurotoxic effects of ZnONPs and discuss the underlying molecular mechanisms. The existing laboratory data demonstrate that both in laboratory rodents and other animals ZnONPs exposure results in a significant accumulation of Zn in brain and nervous tissues, especially following long-term exposure. As a result, overexposure to ZnONPs causes oxidative stress and cell death, both in neurons and glial cells, by induction of apoptosis, necrosis and ferroptosis. In addition, ZnONPs may induce neuroinflammation through the activation of nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and lipoxygenase (LOX) signaling pathways. ZnONPs exposure is associated with altered cholinergic, dopaminergic, serotoninergic, as well as glutamatergic and γ-aminobutyric acid (GABA)-ergic neurotransmission, thus contributing to impaired neuronal signal transduction. Cytoskeletal alterations, as well as impaired autophagy and mitophagy also contribute to ZnONPs-induced brain damage. It has been posited that some of the adverse effects of ZnONPs in brain are mediated by altered microRNA expression and dysregulation of gut-brain axis. Furthermore, in vivo studies have demonstrated that ZnONPs exposure induced anxiety, motor and cognitive deficits, as well as adverse neurodevelopmental outcome. At the same time, the relevance of ZnONPs-induced neurotoxicity and its contribution to pathogenesis of neurological diseases in humans are still unclear. Further studies aimed at estimation of hazards of ZnONPs to human brain health and the underlying molecular mechanisms are warranted.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Greece
| | - Sergey A Miroshnikov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
| | - Abel Santamaria
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico; Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia; Laboratory of Molecular Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia.
| |
Collapse
|
2
|
Teng J, Yu T, Yan F. GABA attenuates neurotoxicity of zinc oxide nanoparticles due to oxidative stress via DAF-16/FoxO and SKN-1/Nrf2 pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173214. [PMID: 38754507 DOI: 10.1016/j.scitotenv.2024.173214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are one of the most widely used metal oxide nanomaterials. The increased use of ZnO-NPs has exacerbated environmental pollution and raised the risk of neurological disorders in organisms through food chains, and it is urgent to look for detoxification strategies. γ-Aminobutyric acid (GABA) is an inhibitory neurotransmitter that has been shown to have anxiolytic, anti-aging and inhibitory effects on nervous system excitability. However, there are few reports on the prevention and control of the toxicity of nano-metal ions by GABA. In zebrafish, ZnO-NPs exposure led to increased mortality and behavioral abnormalities of larva, which could be moderated by GABA intervention. Similar results were investigated in Caenorhabditis elegans, showing lifespan extension, abnormal locomotor frequency and behavior recovery when worms fed with GABA under ZnO-NPs exposure. Moreover, GABA enhanced antioxidant enzyme activities by upregulating the expression of antioxidant-related genes and thus scavenged excessive O2-. In the case of ZnO-NPs exposure, inhibition of nuclear translocation of DAF-16 and SKN-1 was restored by GABA. Meanwhile, the protective effect of GABA was blocked in daf-16 (-) and skn-1 (-) mutant, suggesting that DAF-16/FoxO and SKN-1/Nrf2 pathways is the key targets of GABA. This study provides a new solution for the application of GABA and mitigation of metal nanoparticle neurotoxicity.
Collapse
Affiliation(s)
- Jialuo Teng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Xie Q, Li Z, Chen Y, Zhao Y, Xu Y, Hong Z, Chen Z, Zhang Z, Xu H, Yin Z, Wu X. Mass Spectrometry Imaging Reveals the Morphology-Dependent Toxicological Effects of Nanosilvers on Multiple Organs of Adult Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10015-10027. [PMID: 38798012 DOI: 10.1021/acs.est.4c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nanosilvers with multifarious morphologies have been extensively used in many fields, but their morphology-dependent toxicity toward nontarget aquatic organisms remains largely unclear. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate the toxicological effects of silver nanomaterials with various morphologies on spatially resolved lipid profiles within multiple organs in adult zebrafish, especially for the gill, liver, and intestine. Integrated with histopathology, enzyme activity, accumulated Ag contents and amounts, as well as MSI results, we found that nanosilvers exhibit morphology-dependent nanotoxicity by disrupting lipid levels and producing oxidative stress. Silver nanospheres (AgNSs) had the highest toxicity toward adult zebrafish, whereas silver nanoflakes (AgNFs) exhibited greater toxicity than silver nanowires (AgNWs). Levels of differential phospholipids, such as PC, PE, PI, and PS, were associated with nanosilver morphology. Notably, we found that AgNSs induced greater toxicity in multiple organs, such as the brain, gill, and liver, while AgNWs and AgNFs caused greater toxicity in the intestine than AgNSs. Lipid functional disturbance and oxidative stress further caused inflammation and membrane damage after exposure to nanosilvers, especially with respect to sphere morphology. Taken together, these findings will contribute to clarifying the toxicological effects and mechanisms of different morphologies of nanosilvers in adult zebrafish.
Collapse
Affiliation(s)
- Qingrong Xie
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yuhui Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yizhu Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhouyi Hong
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zilong Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yin
- Institute of Advanced Science Facilities, Shenzhen 518107, China
| | - Xinzhou Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Zhang D, Wang Z, Deng H, Yi S, Li T, Kang X, Li J, Li C, Wang T, Xiang B, Li G. Zinc oxide nanoparticles damage the prefrontal lobe in mouse: Behavioral impacts and key mechanisms. Toxicol Lett 2024; 397:129-140. [PMID: 38759938 DOI: 10.1016/j.toxlet.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Zinc Oxide nanoparticles (ZnO NPs) have dualistic properties due to their advantage and toxicity. However, the impact and mechanisms of ZnO NPs on the prefrontal lobe have limited research. This study investigates the behavioral changes following exposure to ZnO NPs (34 mg/kg, 30 days), integrating multiple behaviors and bioinformatics analysis to identify critical factors and regulatory mechanisms. The essential differentially expressed genes (DEGs) were identified, including ORC1, DSP, AADAT, SLITRK6, and STEAP1. Analysis of the DEGs based on fold change reveals that ZnO NPs primarily regulate cell survival, proliferation, and apoptosis in neural cells, damaging the prefrontal lobe. Moreover, disruption of cell communication, mineral absorption, and immune pathways occurs. Gene set enrichment analysis (GSEA) further shows enrichment of behavior, neuromuscular process, signal transduction in function, synapses-related, cAMP signaling, and immune pathways. Furthermore, alternative splicing (AS) genes highlight synaptic structure/function, synaptic signal transduction, immune responses, cell proliferation, and communication.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China; Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, China
| | - Zhiyuan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Hongmei Deng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Simeng Yi
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xinjiang Kang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Tingting Wang
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou City, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, PR China.
| | - Bo Xiang
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou City, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, PR China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Chen S, Wang X, Ye X, Qin Y, Wang H, Liang Z, Zhu L, Zhou L, Martyniuk CJ, Yan B. Dopaminergic and serotoninergic neurotoxicity of lanthanide phosphate (TbPO 4) in developing zebrafish. CHEMOSPHERE 2023; 340:139861. [PMID: 37597622 DOI: 10.1016/j.chemosphere.2023.139861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Rare earth elements (REEs) are exploited for global use in manufacturing. Such activities result in their release into the environment and the transformation into more stable phosphate deposition. The objective of this study was to evaluate molecular and behavioral changes of zebrafish exposed to the synthesized terbium phosphate (TbPO4) at concentrations of 10, 20, and 50 mg/L and to determine its potential for neurotoxicity. Metabolomics related to neurotransmitters, and assessment of transcripts and proteins were conducted to uncover the molecular mechanisms underlying TbPO4 with emphasis on neurotransmitter systems. Exposure to 20 mg/L TbPO4 induced larval hyperactivity and perturbed the cholinergic system in zebrafish. Based on metabolomics related to neurotransmitters, dopamine (DA), serotonin (5-HT), and many of their precursors and metabolites were decreased in abundance by TbPO4. In addition, the expression levels of transcripts related to the synthesis, transport, receptor binding, and metabolism of DA and 5-HT were analyzed at the mRNA and protein levels. Transcript and protein levels for tyrosine hydroxylase (TH), the rate-limiting enzyme for DA synthesis, were down-regulated in larval fish. Monoamine oxidase (MAO), an enzyme that catabolizes monoamines DA and 5-HT, was also reduced in mRNA abundance. We hypothesize that DA synthesis and monoamine metabolism are associated with behavioral alterations. This study elucidates putative mechanisms and exposure risks to wildlife and humans by characterizing phosphatic REE-induced neurotoxicity in developing zebrafish.
Collapse
Affiliation(s)
- Siying Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Xiaolin Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yingju Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Haiqing Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhenda Liang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Lishan Zhu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Al-Zahaby SA, Farag MR, Alagawany M, Taha HSA, Varoni MV, Crescenzo G, Mawed SA. Zinc Oxide Nanoparticles (ZnO-NPs) Induce Cytotoxicity in the Zebrafish Olfactory Organs via Activating Oxidative Stress and Apoptosis at the Ultrastructure and Genetic Levels. Animals (Basel) 2023; 13:2867. [PMID: 37760268 PMCID: PMC10525688 DOI: 10.3390/ani13182867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology has gained tremendous attention because of its crucial characteristics and wide biomedical applications. Although zinc oxide nanoparticles (ZnO-NPs) are involved in many industrial applications, researchers pay more attention to their toxic effects on living organisms. Since the olfactory epithelium is exposed to the external environment, it is considered the first organ affected by ZnO-NPs. Herein, we demonstrated the cytotoxic effect of ZnO-NPs on the olfactory organ of adult zebrafish after 60 days post-treatment. We opted for this period when fishes stop eating their diet from the aquarium, appear feeble, and cannot swim freely. Our study demonstrated that ZnO-NPs induced significant malformations of the olfactory rosettes at histological, ultrastructural, and genetic levels. At the ultrastructure level, the olfactory lamellae appeared collapsed, malformed, and twisted with signs of degeneration and loss of intercellular connections. In addition, ZnO-NPs harmed sensory receptor and ciliated cells, microvilli, rodlet, crypt, and Kappe cells, with hyper-activity of mucous secretion from goblet cells. At the genetic level, ZnO-NPs could activate the reactive oxygen species (ROS) synthesis expected by the down-regulation of mRNA expression for the antioxidant-related genes and up-regulation of DNA damage, cell growth arrest, and apoptosis. Interestingly, ZnO-NPs affected the odor sensation at 60 days post-treatment (60-dpt) more than at 30-dpt, severely damaging the olfactory epithelium and irreparably affecting the cellular repairing mechanisms. This induced a dramatically adverse effect on the cellular endoplasmic reticulum (ER), revealed by higher CHOP protein expression, that suppresses the antioxidant effect of Nrf2 and is followed by the induction of apoptosis via the up-regulation of Bax expression and down-regulation of Bcl-2 protein.
Collapse
Affiliation(s)
- Sheren A. Al-Zahaby
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.A.-Z.); (S.A.M.)
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Heba S. A. Taha
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | | | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
| | - Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.A.-Z.); (S.A.M.)
| |
Collapse
|
7
|
Pei X, Jiang H, Li C, Li D, Tang S. Oxidative stress-related canonical pyroptosis pathway, as a target of liver toxicity triggered by zinc oxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130039. [PMID: 36166902 DOI: 10.1016/j.jhazmat.2022.130039] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/04/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been widely used in the fields of daily necessities, clinical diagnosis, drug delivery and agricultural production. The improper use of ZnO NPs could pose a risk to ecological environment and public health. Liver has been known as a critical toxic target of ZnO NPs. However, the question whether ZnO NPs lead to hepatocyte death through pyroptosis has not been answered yet, and the effect of oxidative stress on ZnO NPs-induced pyroptosis remains a mystery. We revealed that ZnO NPs disrupted zinc homeostasis and induced oxidative stress impairment in rat liver. Meanwhile, ZnO NPs triggered the assembly of NLRP3-ASC-Caspase-1 inflammatory complex and pyroptosis in both rat liver and HepG2 cells, further causing the activation of GSDMD, promoting the leakage of inflammatory cytokines including IL-1β and IL-18. Importantly, the inhibition of oxidative stress was found to provide protection against pyroptosis in hepatocyte exposed to ZnO NPs. We identified a novel mechanism of liver damage induced by ZnO NPs, demonstrating the activation of canonical Caspase-1-dependent pyroptosis pathway and clarifying the protection of antioxidation against pyroptosis damage. Our discovery provided a support for risk assessment of ZnO NPs and target exploration for clinical treatment related to pyroptosis.
Collapse
Affiliation(s)
- Xingyao Pei
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Haiyang Jiang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300384, China
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300384, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Haihe Education Park, Tongyan Road No. 38, Tianjin 300353, China.
| | - Shusheng Tang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China.
| |
Collapse
|
8
|
Wang M, Feng Y, Cao Z, Yu N, Wang J, Wang X, Kang D, Su M, Hu J, Du H. Multiple generation exposure to ZnO nanoparticles induces loss of genomic integrity in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114383. [PMID: 36508841 DOI: 10.1016/j.ecoenv.2022.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are commonly used in industrial and household applications, prompting the assessment of their associated health risks. Previous studies indicated that ZnO NPs can induce somatic cell mutations, while the aging process appears to increase the mutagenicity of ZnO NPs. However, little is known about the influence of ZnO NPs on genome stability of germ cells, and non-exposed progeny. Here we show that 20 nm ZnO NPs exposure disrupts germ cell development, and elevates the overall mutation frequency of germ cells in Caenorhabditis elegans (C. elegans). We observed that pristine ZnO NPs elicit germ cell apoptosis to a greater extent than the 60-day aged ZnO NPs. By treating parental worms with ZnO NPs for seven successive generations, whole-genome sequencing data revealed that, although the frequency of point mutations is kept unchanged, large deletions are significantly increased in F8 worms. Furthermore, we found that the mutagenicity of ZnO NPs might be partially attributed to the release of Zn2+ ions. Together, our results demonstrate the genotoxic effects of ZnO NPs on germ cells, and the possible underlying mechanism. These findings suggest that germ cell mutagenicity is worthy of consideration for the health risk assessment of engineered NPs.
Collapse
Affiliation(s)
- Meimei Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China.
| | - Yu Feng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Zhenxiao Cao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China
| | - Na Yu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Juan Wang
- Department of Public Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xiaowei Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Dixiang Kang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Mingqin Su
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Jian Hu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Hua Du
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China.
| |
Collapse
|
9
|
Pei X, Jiang H, Xu G, Li C, Li D, Tang S. Lethality of Zinc Oxide Nanoparticles Surpasses Conventional Zinc Oxide via Oxidative Stress, Mitochondrial Damage and Calcium Overload: A Comparative Hepatotoxicity Study. Int J Mol Sci 2022; 23:ijms23126724. [PMID: 35743165 PMCID: PMC9223789 DOI: 10.3390/ijms23126724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/12/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) with high bioavailability and excellent physicochemical properties are gradually becoming commonplace as a substitute for conventional ZnO materials. The present study aimed to investigate the hepatotoxicity mechanism of ZnO NPs and traditional non-nano ZnO particles, both in vivo and in vitro, and identify the differences in their toxic effects. The results showed that the extent and conditions of zinc ion release from ZnO NPs were inconsistent with those of ZnO. The RNA-seq results revealed that the expression quantity of differentially expressed genes (DEGs) and differentially expressed transcripts (DETs) affected by ZnO NPs was more than in ZnO, and the overall differences in genes or transcripts in the ZnO NPs group were more pronounced than in the ZnO group. Furthermore, the cell inactivation, oxidative stress, mitochondrial damage, and intracellular calcium overload induced by ZnO NPs were more serious than ZnO in HepG2 cells. Moreover, compared with traditional ZnO, the rat liver damage induced by ZnO NPs was more significant, with evidence of higher AST and ALT levels, weaker antioxidant capacity, and more serious histopathological damage (p < 0.05). In summary, the hepatotoxicity of ZnO NPs was more serious than that of conventional ZnO, which is helpful to understand the hepatotoxicity mechanism of Zn compounds in different states and improve the risk assessment of novel nano ZnO products in a variety of applications.
Collapse
Affiliation(s)
- Xingyao Pei
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China; (X.P.); (H.J.)
| | - Haiyang Jiang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China; (X.P.); (H.J.)
| | - Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Department of Animal Pharmacy, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300384, China; (G.X.); (C.L.)
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Department of Animal Pharmacy, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300384, China; (G.X.); (C.L.)
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Department of Animal Pharmacy, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300384, China; (G.X.); (C.L.)
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd., Tianjin 300383, China
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin 300353, China
- Correspondence: (D.L.); (S.T.)
| | - Shusheng Tang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China; (X.P.); (H.J.)
- Correspondence: (D.L.); (S.T.)
| |
Collapse
|
10
|
Fan B, Dai L, Liu C, Sun Q, Yu L. Nano-TiO 2 aggravates bioaccumulation and developmental neurotoxicity of triphenyl phosphate in zebrafish larvae. CHEMOSPHERE 2022; 287:132161. [PMID: 34562708 DOI: 10.1016/j.chemosphere.2021.132161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
This study explored the combined effects of titanium dioxide nanoparticles (nano-TiO2) and triphenyl phosphate (TPhP) on the neurodevelopment of zebrafish larvae as well as the underlying mechanisms. With this regard, zebrafish embryos were exposed to nano-TiO2 of 100 μg·L-1, TPhP of 0, 8, 24, 72, and 144 μg·L-1, or their combinations until 120 h post-fertilization (hpf). Results indicated 100 μg·L-1 nano-TiO2 alone to be nontoxic to zebrafish larvae. However, obvious developmental toxicity manifested as inhibition of surviving rate, heart rate and body length as well as increased malformation was observed in the higher concentrations of TPhP (72 and 144 μg·L-1) alone and the co-exposure groups. Additionally, results suggested that nano-TiO2 significantly enhanced the bioaccumulation of TPhP in zebtafish larvae, and thus aggravated the abnormities of spontaneous movement and swimming behavior in zebrafish larvae induced by TPhP. Nano-TiO2 also exacerbated the TPhP-induced inhibition of the axonal growth on the secondary motor neuron, and aggravated the TPhP-induced decrease on expressions of neuron-specific green fluorescent protein (GFP) and neuronal marker genes (ngn1 and elavl3). Further, the content of neurotransmitter serotonin was not altered by TPhP alone exposure, but was decreased significantly in the co-exposure group of 144 μg·L-1 TPhP and nano-TiO2. Our data indicated that nano-TiO2 might aggravate the neuron abnormities and serotonin system dysfunction by enhancing the TPhP accumulation, leading to exacerbated abnormal locomotors in zebrafish larvae.
Collapse
Affiliation(s)
- Boya Fan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
11
|
Gangwar J, Sebastian JK. Unlocking the potential of biosynthesized zinc oxide nanoparticles for degradation of synthetic organic dyes as wastewater pollutants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3286-3310. [PMID: 34850728 DOI: 10.2166/wst.2021.430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The azo dyes released into water from different industries are accumulating in the water bodies and bioaccumulating within living systems thereby affecting environmental health. This is a major concern in developing countries where stringent regulations are not followed for the discharge of industrial waste into water bodies. This has led to the accumulation of various pollutants including dyes. As these developing countries also face acute water shortages and due to the lack of cost-effective systems to remove these pollutants, it is essential to remove these toxic dyes from water bodies, eradicate dyes, or generate fewer toxic derivatives. The photocatalysis mechanism of degradation of azo dyes has gained importance due to its eco-friendly and non-toxic roles in the environment. The zinc nanoparticles act as photocatalysts in combination with plant extracts. Plant-based nanoparticles over the years have shown the potential to degrade dyes efficiently. This is carried out by adjusting the dye and nanoparticle concentrations and combinations of nanoparticles. Our review article considers increasing the efficiency of degradation of dyes using zinc oxide (ZnO) nanoparticles and understanding the photocatalytic mechanisms in the degradation of dyes and the toxic effects of these dyes and nanoparticles in different tropic levels.
Collapse
Affiliation(s)
- Jaya Gangwar
- Department of Life Sciences, Christ University, Bangalore, Karnataka, India E-mail:
| | | |
Collapse
|
12
|
Jia H, Luo KQ. Fluorescence resonance energy transfer-based sensor zebrafish for detecting toxic agents with single-cell sensitivity. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124826. [PMID: 33421851 DOI: 10.1016/j.jhazmat.2020.124826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Zebrafish are widely used for detecting toxic agents because of their unique advantages. The conventional zebrafish-based tests use lethal rates and morphological changes as criteria to evaluate the toxicity. To increase the sensitivity of using zebrafish to detect toxic agents, a fluorescence resonance energy transfer-based apoptotic biosensor was introduced into zebrafish genome to generate transgenic sensor zebrafish. Seven chemicals including heavy metals, nanomaterials and DNA-damaging agents were used to treat the sensor zebrafish to determine the sensitivity of the sensor zebrafish. The results showed that sensor zebrafish can detect the toxicity of the tested agents with single-cell sensitivity. Using the sensor zebrafish, we found that, at 100 nM, heavy metal cadmium (Cd) induced apoptosis of zebrafish cells, while no obvious morphological or behavioral changes were observed from the sensor zebrafish. Even at 44.5 nM (the maximum allowable concentration in drinking water), Cd induced a significant increase of apoptosis in sensor zebrafish. ZnO nanoparticles caused apoptosis in sensor zebrafish at a very low concentration of 100 ng/mL. DNA-damaging agents induced the apoptosis of many cells in sensor zebrafish. The sensor zebrafish are much more sensitive than the conventional zebrafish-based tests and can serve as a powerful tool for detecting toxic agents.
Collapse
Affiliation(s)
- Hao Jia
- Faculty of Health Sciences, University of Macau, Taipa, Macao
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao.
| |
Collapse
|
13
|
Wei CC, Yen PL, Chaikritsadakarn A, Huang CW, Chang CH, Liao VHC. Parental CuO nanoparticles exposure results in transgenerational toxicity in Caenorhabditis elegans associated with possible epigenetic regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111001. [PMID: 32888585 DOI: 10.1016/j.ecoenv.2020.111001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/05/2020] [Accepted: 07/04/2020] [Indexed: 05/21/2023]
Abstract
Environmental nanomaterials contamination is a great concern for organisms including human. Copper oxide nanoparticles (CuO NPs) are widely used in a huge range of applications which might pose potential risk to organisms. This study investigated the in vivo transgenerational toxicity on development and reproduction with parental CuO NPs exposure in the nematode Caenorhabditis elegans. The results showed that CuO NPs (150 mg/L) significantly reduced the body length of parental C. elegans (P0). Only about 1 mg/L Cu2+ (~0.73%) were detected from 150 mg/L CuO NPs in 0.5X K-medium after 48 h. In transgenerational assays, CuO NPs (150 mg/L) parental exposure significantly induced developmental and reproductive toxicity in non-exposed C. elegans progeny (CuO NPs free) on body length (F1) and brood size (F1 and F2), respectively. In contrast, parental exposure to Cu2+ (1 mg/L) did not cause transgenerational toxicity on growth and reproduction. This suggests that the transgenerational toxicity was mostly attributed to the particulate form of CuO NPs. Moreover, qRT-PCR results showed that the mRNA levels of met-2 and spr-5 genes were significantly decreased at P0 and F1 upon only maternal exposure to CuO NPs (150 mg/L), suggesting the observed transgenerational toxicity was associated with possible epigenetic regulation in C. elegans.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan; Department of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Amornrat Chaikritsadakarn
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan.
| |
Collapse
|
14
|
Xu L, Xu M, Wang R, Yin Y, Lynch I, Liu S. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003691. [PMID: 32780948 DOI: 10.1002/smll.202003691] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/26/2020] [Indexed: 06/11/2023]
Abstract
In aquatic environments, a large number of ecological macromolecules (e.g., natural organic matter (NOM), extracellular polymeric substances (EPS), and proteins) can adsorb onto the surface of engineered nanomaterials (ENMs) to form a unique environmental corona. The presence of environmental corona as an eco-nano interface can significantly alter the bioavailability, biocompatibility, and toxicity of pristine ENMs to aquatic organisms. However, as an emerging field, research on the impact of the environmental corona on the fate and behavior of ENMs in aquatic environments is still in its infancy. To promote a deeper understanding of its importance in driving or moderating ENM toxicity, this study systemically recapitulates the literature of representative types of macromolecules that are adsorbed onto ENMs; these constitute the environmental corona, including NOM, EPS, proteins, and surfactants. Next, the ecotoxicological effects of environmental corona-coated ENMs on representative aquatic organisms at different trophic levels are discussed in comparison to pristine ENMs, based on the reported studies. According to this analysis, molecular mechanisms triggered by pristine and environmental corona-coated ENMs are compared, including membrane adhesion, membrane damage, cellular internalization, oxidative stress, immunotoxicity, genotoxicity, and reproductive toxicity. Finally, current knowledge gaps and challenges in this field are discussed from the ecotoxicology perspective.
Collapse
Affiliation(s)
- Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Giordo R, Nasrallah GK, Al-Jamal O, Paliogiannis P, Pintus G. Resveratrol Inhibits Oxidative Stress and Prevents Mitochondrial Damage Induced by Zinc Oxide Nanoparticles in Zebrafish ( Danio rerio). Int J Mol Sci 2020; 21:E3838. [PMID: 32481628 PMCID: PMC7312482 DOI: 10.3390/ijms21113838] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Despite their wide industrial use, Zinc oxide (ZnO) nanoparticles (NPs) exhibit a high toxic potential while concerns of their health-related risks are still present, urging additional in vivo clarification studies. Oxidative stress is recognized as the primary trigger of NP-associated toxicity, suggesting antioxidants as a promising counteractive approach. Here, we investigated the protective effect of the natural antioxidant resveratrol against ZnO NP-induced toxicity in vivo using the zebrafish model. Our findings demonstrate that resveratrol counteracts ZnO NP-induced zebrafish lethality preventing cardiac morphological and functional damage. NP-induced vascular structural abnormalities during embryonic fish development were significantly counteracted by resveratrol treatment. Mechanistically, we further showed that resveratrol inhibits ROS increase, prevents mitochondrial membrane potential dysfunction, and counteracts cell apoptosis/necrosis elicited by ZnO NP. Overall, our data provide further evidence demonstrating the primary role of oxidative stress in NP-induced damage, and highlight new insights concerning the protective mechanism of antioxidants against nanomaterial toxicity.
Collapse
Affiliation(s)
- Roberta Giordo
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (O.A.-J.)
| | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (O.A.-J.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ola Al-Jamal
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (O.A.-J.)
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Surgery, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy;
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, UAE
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| |
Collapse
|
16
|
Elsharawy K, Abou-Dobara M, El-Gammal H, Hyder A. Chitosan coating does not prevent the effect of the transfer of green silver nanoparticles biosynthesized by Streptomyces malachitus into fetuses via the placenta. Reprod Biol 2020; 20:97-105. [PMID: 32044208 DOI: 10.1016/j.repbio.2020.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Green synthesized nanoparticles are more advantageous over conventionally prepared ones due to less toxicity, production cost, and environmental hazards. With the widespread of the utilization of nanoparticles, little is known about the maternal-fetal transplacental transfer of green nanoparticles. We have biosynthesized silver nanoparticles using metabolites of Streptomyces malachitus and sunlight then coated them with chitosan. These nanoparticles have been characterized and intraperitoneally administered at doses of 100 mg/kg on the 6th, 8th, and 10th gestational days. On the 18th day of pregnancy, both coated and non-coted NPs were detected in different maternal tissues, placenta, and in fetuses, as determined by estimation of silver content and observation by electron microscopy. Chitosan coating decreased the silver content in different tissues, maybe due to the larger size of coated nanoparticles that retards the transfer. The toxic effects on maternal and fetal tissues were proportional to their silver content, as determined by the liver and kidney functional analysis of pregnant rats and the ultrastructural and histopathological examination of the maternal liver, placenta and fetal liver. The present data suggest that green silver nanoparticles biosynthesized by Streptomyces malachitus cross the placenta and have toxic effects on maternal tissues, placenta, and fetus. Chitosan coating of these nanoparticles decreases the transfer, and consequently, the toxicity. However, it does not prevent this toxicity.
Collapse
Affiliation(s)
- Khloud Elsharawy
- Departments of Zoology, Faculty of Science, Damietta University, Egypt
| | - Mohamed Abou-Dobara
- Departments of Botany & Microbiology, Faculty of Science, Damietta University, Egypt
| | - Hekmat El-Gammal
- Departments of Zoology, Faculty of Science, Damietta University, Egypt
| | - Ayman Hyder
- Departments of Zoology, Faculty of Science, Damietta University, Egypt.
| |
Collapse
|
17
|
Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. J Control Release 2019; 311-312:301-318. [PMID: 31446084 DOI: 10.1016/j.jconrel.2019.08.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022]
Abstract
With the rapid development of engineered nanomaterials for various applications, in vivo toxicological studies for evaluating the potential hazardous effects of nanomaterials on environmental and human safety are in urgent need. Zebrafish has long been considered as the "gold standard" for biosafety assessments of chemicals and pollutants due to its high fecundity, cost-effectiveness, well-characterized developmental stages, optical transparency, and so forth. Thus, zebrafish holds great potential for high-throughput nanotoxicity screening. In this review, we summarize the in vivo toxicological profiles of different nanomaterials, including Ag nanoparticles (NPs), CuO NPs, silica NPs, polymeric NPs, quantum dots, nanoscale metal-organic frameworks, etc, in zebrafish and focus on how the physicochemical properties (e.g., size, surface charge, and surface chemistry) of these nanomaterials influence their biosafety. In addition, we also report the recent advances of the in vivo delivery of nanopharmaceuticals using zebrafish as the model organism for therapeutic assessment, biodistribution tracking, and the controlled release of loaded drugs. Limitations and special considerations of zebrafish model are also discussed. Overall, zebrafish is expected to serve as a high-throughput screening platform for nanotoxicity and drug delivery assessment, which may instruct the design of safe nanomaterials and more effective nanomedicines.
Collapse
|
18
|
Younes N, Pintus G, Al-Asmakh M, Rasool K, Younes S, Calzolari S, Mahmoud KA, Nasrallah GK. “Safe” Chitosan/Zinc Oxide Nanocomposite Has Minimal Organ-Specific Toxicity in Early Stages of Zebrafish Development. ACS Biomater Sci Eng 2019; 6:38-47. [DOI: 10.1021/acsbiomaterials.8b01144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Kashif Rasool
- Qatar Environment
and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | | | - Simone Calzolari
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), 08003 Barcelona, Spain
| | - Khaled A. Mahmoud
- Qatar Environment
and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
- Department of Physics & Mathematical Engineering, Faculty of Engineering, Port Said University, 42523 Port Said, Egypt
| | | |
Collapse
|