1
|
Rob MM, Akhter D, Islam T, Bhattacharjya DK, Shoaib Khan MS, Islam F, Chen J. Copper stress in rice: Perception, signaling, bioremediation and future prospects. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154314. [PMID: 39033671 DOI: 10.1016/j.jplph.2024.154314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Copper (Cu) is an indispensable micronutrient for plants, animals, and microorganisms and plays a vital role in different physiological processes. However, excessive Cu accumulation in agricultural soil, often through anthropogenic action, poses a potential risk to plant health and crop productivity. This review article provided a comprehensive overview of the available information regarding Cu dynamics in agricultural soils, major sources of Cu contamination, factors influencing its mobility and bioavailability, and mechanisms of Cu uptake and translocation in rice plants. This review examined the impact of Cu toxicity on the germination, growth, and photosynthesis of rice plants. It also highlighted molecular mechanisms underlying Cu stress signaling and the plant defense strategy, involving chelation, compartmentalization, and antioxidant responses. This review also identified significant areas that need further research, such as Cu uptake mechanism in rice, Cu signaling process, and the assessment of Cu-polluted paddy soil and rice toxicity under diverse environmental conditions. The development of rice varieties with reduced Cu accumulation through comprehensive breeding programs is also necessary. Regulatory measures, fungicide management, plant selection, soil and environmental investigation are recommended to prevent Cu buildup in agricultural lands to achieve sustainable agricultural goals.
Collapse
Affiliation(s)
- Md Mahfuzur Rob
- Department of Horticulture, Faculty of Agriculture, Sylhet Agricultural University, Sylhe, 3100, Bangladesh
| | - Delara Akhter
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Tariqul Islam
- Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Debu Kumar Bhattacharjya
- Department of Biochemistry, Sher-e-Bangla Agricultural University, Sherebangla Nagar, Dhaka, 1207, Bangladesh
| | | | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
De Oliveira T, Dang DPT, Chaillou M, Roy S, Caubrière N, Guillon M, Mabilais D, Ricordel S, Jean-Soro L, Béchet B, Paslaru BM, Poirier L, Gasperi J. Tire and road wear particles in infiltration pond sediments: Occurrence, spatial distribution, size fractionation and correlation with metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176855. [PMID: 39414040 DOI: 10.1016/j.scitotenv.2024.176855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Stormwater systems, such as infiltration ponds or basins, play a critical role in managing runoff water and reducing particulate pollution loads in downstream environments through decantation. Road runoff carries several pollutants, including trace metals and tire and road wear particles (TRWP). To improve our understanding of infiltration ponds as regards TRWP and their capacity to reduce TRWP loads, we have studied the occurrence, spatial distribution and size distribution of TRWP, as well as their relationship with metals, in considering the input of metals as tire additives, in the sediments of an infiltration pond located along the Nantes urban ring road (Western France), which happens to be a high-traffic roadway site. The sediment was analyzed using pyrolysis coupled with gas chromatography-mass spectrometry to determine the polymeric content of tires, specifically in quantifying the styrene-butadiene rubber (SBR) and butadiene rubber (BR) pyrolytic markers. By applying an SBR + BR-to-TRWP conversion factor, the results showed significant TRWP contamination, up to 65 mg/g, with a spatial enrichment from the entrance to the overflow section of the pond. Size fractionation revealed a bimodal distribution, indicating two distinct types of TRWP. The first type is characterized by small diameters (63-160 μm), suggesting the presence of TRWP less integrated with mineral and organic particles. The second type, characterized by larger diameters (200-500 μm), suggests a more pronounced integration with these same mineral and organic particles. A significant positive correlation between TRWP and metals (As, Cd, Cr, Cu, Li, Mo, Ni, Sb, V, Zn) was found (r > 0.739, p < 0.05). This correlation implies that TRWP and/or their associated phases may act as an indicator of metal contamination in the pond sediments. Lastly, a mass balance between TRWP inputs and the amount retained in the sediments underscores the role of infiltration ponds as "sinks" for TRWP.
Collapse
Affiliation(s)
| | | | | | - Sampriti Roy
- Univ Gustave Eiffel, GERS-LEE, F-44344 Bouguenais, France
| | | | - Martin Guillon
- Univ Gustave Eiffel, GERS-LEE, F-44344 Bouguenais, France
| | - David Mabilais
- Univ Gustave Eiffel, GERS-LEE, F-44344 Bouguenais, France
| | | | | | | | | | | | - Johnny Gasperi
- Univ Gustave Eiffel, GERS-LEE, F-44344 Bouguenais, France
| |
Collapse
|
3
|
Li J, Xu Y, Zhang Y, Liu Z, Gong H, Fang W, OUYang Z, Li W, Xu L. Quantifying the mitigating effect of organic matter on heavy metal availability in soils with different manure applications: A geochemical modelling study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116321. [PMID: 38608382 DOI: 10.1016/j.ecoenv.2024.116321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/14/2024] [Accepted: 04/10/2024] [Indexed: 04/14/2024]
Abstract
Manure is one of the main sources of heavy metal (HM) pollution on farmlands. It has become the focus of global ecological research because of its potential threat to human health and the sustainability of food systems. Soil pH and organic matter are improved by manure and play pivotal roles in determining soil HM behavior. Geochemical modeling has been widely used to assess and predict the behavior of soil HMs; however, there remains a research gap in manure applications. In this study, a geochemical model (LeachXS) coupled with a pH-dependent leaching test with continuously simulations over a broad pH range was used to determine the effects and pollution risks of pig or cattle manure separate application on soil HMs distribution. Both pig and cattle manure applications led to soil pH reduction in alkaline soils and increased organic matter content. Pig manure application resulted in a potential 90.5-156.0 % increase in soil HM content. Cattle manure did not cause significant HM contamination. The leaching trend of soil HMs across treatments exhibited a V-shaped change, with the lowest concentration at pH = 7, gradually increasing toward strong acids and bases. The dissolved organic matter-bound HM content directly increased the HM availability, especially for Cu (up to 8.4 %) after pig manure application. However, more HMs (Cr, Cu, Zn, Ni) were in the particulate organic matter-bound state than in other solid phases (e.g., Fe-Al(hydr) oxides, clay minerals), which inhibited the HMs leaching by more than 19.3 % after cattle manure application. Despite these variations, high HM concentrations introduced by pig manure raised the soil contamination risk, potentially exceeding 40 times at pH ±1. When manure is returned to the field, reducing its HM content and mitigating possible pollution is necessary to realize the healthy and sustainable development of circular agriculture.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yitao Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Liu
- Yellow River Delta Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Shandong Dongying Institute of Geographic Sciences, Dongying 257000, China
| | - Huarui Gong
- Yellow River Delta Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Shandong Dongying Institute of Geographic Sciences, Dongying 257000, China
| | - Wen Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhu OUYang
- Yellow River Delta Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiwei Li
- Natural Resources Bureau of Yucheng City, Dezhou, Shandong 251299, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
4
|
Yang Y, Feng W, Bao L, Xian L, Lu J, Wu D, Jacobs DF, Zeng S. Effects of sewage sludge application methods on the transport of heavy metals with runoff and their mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168909. [PMID: 38029981 DOI: 10.1016/j.scitotenv.2023.168909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Woodland utilization is a promising disposal method for sewage sludge (SS). However, the potential risk of heavy metals (HMs) transport with runoff must be considered. Among the various factors influencing HMs loss, SS application methods (Holing application, HA; Broadcasting and mixing application, BM; Broadcasting application, BA) are likely to cause significant effects by altering soil erosion and soil aggregates. This study aimed to determine how SS application methods affect HMs loss, soil aggregates erosion, and how they are related. Accordingly, the losses of HMs in surface runoff, interflow, and sediment were quantified during six simulated rainfalls. The results demonstrated that all methods reduced surface runoff, but BA was the most effective. Additionally, BA significantly reduced the total sediment yield and the total proportion of the <0.05 mm fraction aggregates. Moreover, BA had the smallest cumulative losses of Pb and Cd through surface runoff and Cu, Pb, and Cd through sediment. Sediment was the most important pathway for HMs loss, through which over 76.56 % of HMs were lost. In BA, the <0.05 mm fraction aggregates had the lowest HMs load, whereas in other treatments had the highest (54.33 %-80.33 %). The potential ecological risk coefficient of Cd was beyond "moderate" in all the pathways of BM and "high" in the interflow of each SS treatment. Nonetheless, when the multi-elements were evaluated collectively, the potential ecological risk index for each SS treatment was categorized as "low". Overall, BA not only reduced soil erosion but also posed no risk of HMs pollution. It should be noted that the loss of Cd in the interflow had a great impact, while the <0.05 mm fraction aggregates played a significant role in the HMs load. Thus, the current study not only provides an effective approach for the environmentally safe disposal of SS but also proposes a scientific method for the application of SS in woodlands.
Collapse
Affiliation(s)
- Yuantong Yang
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Weixun Feng
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Li'an Bao
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xian
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Jie Lu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Daoming Wu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Douglass F Jacobs
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907-2061, USA.
| | - Shucai Zeng
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Cao Y, Ma X, Chen N, Chen T, Zhao M, Li H, Song Y, Zhou J, Yang J. Polypropylene microplastics affect the distribution and bioavailability of cadmium by changing soil components during soil aging. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130079. [PMID: 36242955 DOI: 10.1016/j.jhazmat.2022.130079] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Compared with the widespread and serious heavy metal contamination in soils, microplastic pollution has gained attention only recently. Little is known about how microplastics affect the distribution of heavy metals in soils, especially across soil components level. In this study, a 180-day soil aging experiment and soil density fractionation were performed to investigate the effect of polypropylene (PP) microplastics on the binding behavior of cadmium (Cd) to solid components, i.e. particulate organic matter, organo-mineral complexes (OMC), and mineral. Results showed addition of 2-10% microplastics in soils induced the decomposition of OMC fraction by 10.88-23.10%. Compared to the control, the content of dissolved organic carbon increased, and pH, humic substances, and soil organic matter decreased with microplastics. After 180d of aging, the content of Cd in OMC fraction increased by 17.92%, while microplastics made Cd contents decline by 10.01-19.75%. The impacts strongly depended on the dose and surface characteristic of microplastics. Overall, PP microplastics increased the concentration of bioavailable Cd in soils via decreasing soil retention of Cd by the OMC fraction. These findings based on the solid components level will provide a new perspective for understanding microplastics effects on soil systems and pollutants.
Collapse
Affiliation(s)
- Yanxiao Cao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| | - Xianying Ma
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Nuo Chen
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Tiantian Chen
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Mengjie Zhao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yongwei Song
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Jingcheng Zhou
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Institute of Environmental Management and Policy, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Jun Yang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Institute of Environmental Management and Policy, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| |
Collapse
|
6
|
Cheng X, Wei C, Ke X, Pan J, Wei G, Chen Y, Wei C, Li F, Preis S. Nationwide review of heavy metals in municipal sludge wastewater treatment plants in China: Sources, composition, accumulation and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129267. [PMID: 35716572 DOI: 10.1016/j.jhazmat.2022.129267] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 05/22/2023]
Abstract
Systematically analyzing the problem of heavy metals in the municipal sludge, a meta-analysis of nine metals was undertaken to distinguish the sources and sinks of those with the impact of their accumulation on the environment. Municipal sludge was rich in N, P and K nutrients, was found to contain heavy metals comprising the descending order Zn > Mn > Cu > Cr > Pb > Ni > As > Cd > Hg. The forms, in which heavy metals accumulated in geographical regions, were characterized. The geographical distribution of heavy metals in the sludge showed a significant difference, with higher accumulation in Eastern and Southern regions, however, the risk evaluations showed the higher risk of heavy metals accumulation in Eastern and Western regions. Agricultural, industrial and traffic activities, and storm water pipeline sediments were identified as the main sources of heavy metals in the sludge. The correlation analysis elucidated the role of the total organic carbon in the accumulation of heavy metals in sludge. Municipal sludge is endowed with resource properties due to the detection of heavy metal contents thresholds in household products and its own resource-attributable enrichment behavior, which requires deduction of environmental risks.
Collapse
Affiliation(s)
- Xiaoqian Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jiamin Pan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Gengrui Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sergei Preis
- Department of Materials and Environment Technology, Tallinn University of Technology, Tallinn 19086, Estonia.
| |
Collapse
|
7
|
Morais GP, Comin JJ, Lourenzi CR, Tiecher TL, Soares CRFS, Loss A, Gatiboni LC, Bortolini JG, Ferreira GW, Dos Santos EMH, Brunetto G. Proposition of critical thresholds for copper and zinc transfer to solution in soils. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:623. [PMID: 35907031 DOI: 10.1007/s10661-022-10278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Several studies have reported increased copper (Cu) and zinc (Zn) levels in agricultural soils worldwide, mainly due to organic waste and successive leaf fungicide applications in crops. However, the critical transfer thresholds in soils, which can indicate the real risk of environmental contamination and toxicity to plants, remain poorly understood. This study aimed to define the maximum Cu and Zn adsorption capacity (MAC) and threshold (T-Cu and T-Zn) in different soils in Southern Brazil, which present different clay and organic matter (OM) levels. Bw (Oxisol) and A horizon (Inceptisol) samples were used to obtain soils with clay and OM contents ranging from 4 to 70% and from 0.5 to 9.5%, respectively. Cu and Zn adsorption curves were plotted for MAC determination purposes. Based on Cu and Zn MAC values, different concentrations of these elements were applied to the soils for subsequent quantification of available Cu and Zn levels (Mehlich-1 and water). T-Cu in soils with different clay contents ranged from 81 to 595 mg Cu kg-1, whereas T-Zn, from 195 to 378 mg Zn kg-1. T-Cu in soils with different OM levels ranged from 97 to 667 mg Cu kg-1, whereas T-Zn, from 226 to 495 mg Zn kg-1. T-Cu can be calculated through the equation: T-Cu = 75 × (%CL0.34) × (%OM0.39), whereas T-Zn: T-Zn = 2.7 × (CL) + 126 (by taking into consideration the clay content) and T-Zn = - 9.3 × (%OM)2 + 92.4 × (%OM) + 66 (by taking into consideration OM content). T-Cu and T-Zn can be used by researchers, inspection bodies, technical assistance institutions, and farmers as safe indicators to monitor the potential for environmental contamination.
Collapse
Affiliation(s)
- Gildean Portela Morais
- Agricultural Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88034-000, Brazil
| | - Jucinei José Comin
- Agricultural Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88034-000, Brazil
| | - Cledimar Rogério Lourenzi
- Agricultural Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88034-000, Brazil
| | - Tadeu Luis Tiecher
- Rio Grande Do Sul Federal Institute, Restinga Campus, Porto Alegre, RS, 91791-508, Brazil
| | - Cláudio Roberto Fonsêca Sousa Soares
- Biological Sciences Center, Microbiology, Immunology and Parasitology Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Arcângelo Loss
- Agricultural Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88034-000, Brazil
| | - Luciano Colpo Gatiboni
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Juliana Gress Bortolini
- Agricultural Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88034-000, Brazil
| | - Guilherme Wilbert Ferreira
- Agricultural Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88034-000, Brazil.
| | | | - Gustavo Brunetto
- Soil Science Department, Federal University of Santa Maria (UFSM), Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
8
|
Xiang Y, Kang F, Li Q. Effects of Artemisia ordosica roots on the cadmium adsorption characterization on particulate organic matter and soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112315. [PMID: 34015628 DOI: 10.1016/j.ecoenv.2021.112315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Particulate organic matter (POM) is an effective adsorbent for decreasing the contaminant of cadmium, but little is known about the relevant mechanisms under the effect of plant. In this work, POM were used to study the removal of Cd2+ in the initial concentration range of 0-4.46 mmol L-1 at pH 5.5, and the effect of Artemisia ordosica roots and pH on kinetics and equilibrium of cadmium adsorption on POM and soils were examined. The result indicated that adsorption kinetics fit well with the pseudo-second-order kinetic model, and the equilibrium data for Cd adsorption fit much well to the Langmuir model. The maximum adsorption capacity for POM at equilibrium corresponding to the monolayer coverage reached 0.287 mmol/g for Cd. The amount of Cd adsorbed in the POM and soil increased with the increase of pH from 4 to 8.5. The Artemisia ordosica roots decreased Cd adsorption in POM; instead, the adsorption capacity of soil for Cd was improved under the effect of Artemisia ordosica roots. The Fourier Transform Infrared spectroscopic (FTIR) analysis indicated that the complexation of POM and Cd was mainly through sulfhydryl, hydroxyl and carboxyl groups.
Collapse
Affiliation(s)
- Yulin Xiang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi Province, China; Shaanxi Key Laboratory of Ecological Restoration in Shabei Mining Area, Yulin University, Yulin 719000, Shaanxi, China.
| | - Furen Kang
- Shaanxi Key Laboratory of Ecological Restoration in Shabei Mining Area, Yulin University, Yulin 719000, Shaanxi, China
| | - Qiang Li
- Shaanxi Key Laboratory of Ecological Restoration in Shabei Mining Area, Yulin University, Yulin 719000, Shaanxi, China
| |
Collapse
|
9
|
Gujre N, Agnihotri R, Rangan L, Sharma MP, Mitra S. Deciphering the dynamics of glomalin and heavy metals in soils contaminated with hazardous municipal solid wastes. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125869. [PMID: 34492816 DOI: 10.1016/j.jhazmat.2021.125869] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals (HMs) accumulation in the soils poses risks towards the environment and health. Glomalin related soil protein (GRSP) produced by arbuscular mycorrhizal fungi (AMF) has metal-sorption and soil aggregation properties and is critical in the survival of plants and AMF. For the first time, this study attempted to examine the GRSP mediated bio-stabilization of HMs in soils contaminated with municipal solid wastes (MSW). The content and interrelationship of GRSP and HMs, along with soil physicochemical properties were studied in 20 different soil samples from the dumping site. Higher amount of GRSP indicated potential bio-stabilization of HMs at some sites. GRSP exhibited weak positive correlation with essential (Zn, Cu) and toxic HMs (Cd, Ni). Cr and Mn were possibly sequestered in AMF structures and thus found to be negatively correlated with GRSP. The positive correlation observed between GRSP and soil nutrients like N, P and soil organic carbon (SOC) indicating potential of AMF-GRSP in sustaining soil health. Results revealed that AMF residing at contaminated sites produced higher amount of GRSP potentially to bio-stabilize the HMs, and reduce their bioavailability and also facilitate SOC sequestration.
Collapse
Affiliation(s)
- Nihal Gujre
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), Assam 781039, India
| | - Richa Agnihotri
- ICAR, Indian Institute of Soybean Research, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam 781039, India
| | - Mahaveer P Sharma
- ICAR, Indian Institute of Soybean Research, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, Centre for Rural Technology, Indian Institute of Technology Guwahati (IITG), Assam 781039, India.
| |
Collapse
|
10
|
Miao C, Yao SS, Liu SJ, Zhang K. Effect of water-soluble thiourea formaldehyde (WTF) on soil contaminated with high copper (Ⅱ) concentration. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124929. [PMID: 33421878 DOI: 10.1016/j.jhazmat.2020.124929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
It is very important to seek a heavy metal soil stabilization/solidification (S/S) agent that has less risk of secondary release and has less impact on the soil. This study explored the repair effect of a new resin repair agent water-soluble thiourea-formaldehyde (WTF), and its stability under indigenous biodegradation and compared the repair effect with sodium sulfide (Na2S) and hydroxyapatite (HAP). Diethylene triamine pentaacetic acid leaching experiments show that WTF can effectively solidify/stabilize 97.9-84.7% of Cu. At the same time, heavy metal speciation analysis experiments show that WTF does indeed convert the exchangeable Cu in the soil into a non-exchangeable form. Research on soil organic matter, biological carbon and enzyme activity after remediation shows that WTF has a more positive effect on soil function, compared with HAP and Na2S. Experiments using indigenous microorganisms to decompose the precipitation formed by WTF and Cu show that under the condition of less impact on soil microorganisms, the risk of secondary release of heavy metals caused by soil microorganisms after WTF remediation is less. These findings provide valuable experience for understanding the role of resin structure in preventing the secondary release of heavy metals and restoring soil function.
Collapse
Affiliation(s)
- Chen Miao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shan-Shan Yao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - She-Jiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Kai Zhang
- Tianjin TEDA Greening Group Co., Ltd., China
| |
Collapse
|
11
|
Islam MR, Sanderson P, Johansen MP, Payne TE, Naidu R. The influence of soil properties on sorption-desorption of beryllium at a low level radioactive legacy waste site. CHEMOSPHERE 2021; 268:129338. [PMID: 33383279 DOI: 10.1016/j.chemosphere.2020.129338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 05/14/2023]
Abstract
This study examined the influence of soil physicochemical properties on the sorption, desorption and kinetics of beryllium (Be) uptake and release on soils from a legacy waste site in Australia. This information is needed to help explain the current distribution of Be at the site and evaluate potential future environmental risks. Sorption was determined by a batch study and key soil properties were assessed to explain Be retention. The soil was favourable for sorption of Be (up to 99%) due to organic content, negative surface charge, soil oxyhydroxides (Fe/Al/Mn-O/OH) and the porosity of the soil structure. Lesser sorption was observed in the presence of a background electrolyte (NaNO3). Sorption closely followed pseudo second order kinetics and was best described by the Langmuir model. FTIR analysis suggested that chemisorption was the predominant mechanism of Be sorption. Desorption was very low and best described by the Freundlich model. The low desorption reflected the high Kd (up to 6624 L/kg), and the presence of hysteresis suggested partially irreversible binding of Be with active surfaces of the soil matrix (minerals, SOM, oxyhydroxides of Fe/Al/Mn etc.). Intra-particle diffusion of Be and entrapment in the pores contribute to the irreversible binding. The sorption behaviour of Be helped to explain the relative immobility of Be at the site despite the significant quantities of Be disposed. Soil physicochemical properties were significant for Be sorption, through influencing both the uptake and desorption, and this demonstrates the implications of these measurements for evaluating potential future risks to the environment.
Collapse
Affiliation(s)
- Md Rashidul Islam
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UoN), Callaghan Campus, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), ATC Building, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Peter Sanderson
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UoN), Callaghan Campus, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), ATC Building, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| | - Mathew P Johansen
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW, 2234, Australia
| | - Timothy E Payne
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW, 2234, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UoN), Callaghan Campus, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), ATC Building, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
12
|
Zhang Y, Tian R, He A, Tang J, Yang S, Li H. Influence of divalent heavy metals on the aggregation of humic acids: Hofmeister effects. CHEMOSPHERE 2020; 261:127701. [PMID: 32717512 DOI: 10.1016/j.chemosphere.2020.127701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Yekun Zhang
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, No.2 Tiansheng Road, Chongqing, 400715, China.
| | - Rui Tian
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, No.2 Tiansheng Road, Chongqing, 400715, China.
| | - Aizhou He
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, No.2 Tiansheng Road, Chongqing, 400715, China.
| | - Jia Tang
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, No.2 Tiansheng Road, Chongqing, 400715, China.
| | - Shishu Yang
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, No.2 Tiansheng Road, Chongqing, 400715, China.
| | - Hang Li
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, No.2 Tiansheng Road, Chongqing, 400715, China.
| |
Collapse
|
13
|
Jasmin C, Anas A, Singh D, Purohit HJ, Gireeshkumar TR, Nair S. Aberrations in the microbiome of cyanobacteria from a tropical estuary polluted by heavy metals. MARINE POLLUTION BULLETIN 2020; 160:111575. [PMID: 32810667 DOI: 10.1016/j.marpolbul.2020.111575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The effect of heavy metal pollution on the microbiome of cyanobacteria in Cochin estuary (CE) on the southwest coast of India is reported in the study. Statistically significant difference in heavy metal concentration was observed between water, suspended particulate matter (SPM) and sediment. The Zn, Cd, Cu, Ni and Cr were 2-6 times higher in the SPM compared with the sediment, while Pb was 10 to 25 times higher. Although nearly 60% of the species diversity of microbiome was common between cyanobacteria enriched from the upstream (S1S) and downstream (S11B), there was a difference in the major groups of heterotrophic bacterial associates. Proteobacteria was the dominant phylum (>80%) in S1S, while it was second only (27.5%) after Planctomycetes (37.4%) in S11B. The results of the current study indicate that the pollution can influence an ecosystem at the micro-niche level.
Collapse
Affiliation(s)
- C Jasmin
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi 682 018, India
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi 682 018, India.
| | - Dharmesh Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, India
| | - T R Gireeshkumar
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi 682 018, India
| | - Shanta Nair
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi 682 018, India
| |
Collapse
|
14
|
Chen W, Peng L, Hu K, Zhang Z, Peng C, Teng C, Zhou K. Spectroscopic response of soil organic matter in mining area to Pb/Cd heavy metal interaction: A mirror of coherent structural variation. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122425. [PMID: 32135370 DOI: 10.1016/j.jhazmat.2020.122425] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Understanding the interaction between heavy metals and soil organic matter (SOM) in mining area is important for the clarification of the environmental behaviors of heavy metals. In this work, the coherence of structural changes of SOM during interaction with Pb2+ and Cd2+ ions were examined by using UV-vis/fluorescence spectroscopy coupled with correlation analyses. The result showed that phenolic- and carboxylic-like groups of SOM were engaged in the complexation of heavy metals (Pb2+ and Cd2+) with SOM, resulting in the formation of highly conjugated macromolecules/aggregates and an increase in molecular weight/size. Fluorescent humic-like, fulvic-like, and protein-like species were involved in the binding with Pb2+/Cd2+ ions, which were closely correlated with phenolic-like and carboxylic-like constitutes. SOM was more favorable to bind with Pb2+ ions than Cd2+ ions, with a less susceptive of SOM structure to Pb2+/Cd2+ ions in the mining area compared to those off the mining area under heavy metal stress. These results may provide a new insight for the treatment and remediation of heavy metal-polluted soil in mining area.
Collapse
Affiliation(s)
- Wei Chen
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Li Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Keren Hu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhang Zhang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Changhong Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Chunying Teng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Kanggen Zhou
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| |
Collapse
|
15
|
Shi J, Pang J, Liu Q, Luo Y, Ye J, Xu Q, Long B, Ye B, Yuan X. Simultaneous removal of multiple heavy metals from soil by washing with citric acid and ferric chloride. RSC Adv 2020; 10:7432-7442. [PMID: 35492199 PMCID: PMC9049904 DOI: 10.1039/c9ra09999a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Citric acid and ferric chloride exhibited synergistic effect on the removal of multiple heavy metals from soil.
Collapse
Affiliation(s)
- Jiyan Shi
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Jingli Pang
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Qinglin Liu
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Yating Luo
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Jien Ye
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Qiao Xu
- Department of Environmental Engineering
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou
- China
| | - Bibo Long
- Guangzhou Sugarcane Industry Research Institute
- Guangdong Bioengineering Institute
- Guangzhou
- China
| | - Binhui Ye
- Chengbang Eco-Environment Co., Ltd
- Hangzhou
- China
| | - Xiaofeng Yuan
- College of Life Science
- Zhejiang Chinese Medical University
- Hangzhou
- China
| |
Collapse
|
16
|
Guo D, Ren C, Ali A, Li R, Du J, Liu X, Guan W, Zhang Z. Streptomyces pactum combined with manure compost alters soil fertility and enzymatic activities, enhancing phytoextraction of potentially toxic metals (PTMs) in a smelter-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:312-320. [PMID: 31202931 DOI: 10.1016/j.ecoenv.2019.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 05/04/2023]
Abstract
The effect of manure compost alone and combined with Streptomyces pactum (Act12) applied in the smelter-contaminated soil was investigated. The soil fertility, enzymatic activities, potentially toxic metals (PTMs) solubility, and phytoremediation efficiency of potherb mustard (Brassica juncea, Coss.) were assessed. Results showed that the application of compost reduced the soil pH, while significantly increased the soil electrical conductivity (EC) (7.0 folds), available phosphorus (AP) (10.8 folds), available potassium (AK) (2.81 folds), dissolved organic carbon (DOC) (5.22 folds), organic matter (OM) (4.93 folds), together with soil enzymatic activities viz. urease (UR) (4.39 folds), dehydrogenase (DEH) (45.0 folds) and alkaline phosphatase (ALP) (123.9 folds) in comparison with control. The inoculation of Act12 increased AP, AK, DOC, OM and UR values, but reduced EC, DEH and ALP values compared to corresponding lone compost amendment. Additionally, Act12 solubilized PTMs (Cd and Zn) in the soil, and accordingly enhanced the PTMs uptake in the plant. The phytoextraction indices viz. biological concentration factor (BCF), translocation factor (TF) and metal extraction amount (MEA) indicated that compost and Act12 had a synergistic role in enhancing the phytoremediation efficiency, among which MEA values of Cd and Zn maximally increased by 9.64 and 11.4 folds, respectively, compared to control. Redundancy analysis (RDA) indicated that phytoextraction indices correlated well with soil parameters. Our results suggested that manure compost associated with Act12 is a potential strengthening strategy in phytoremediation of PTMs contaminated soil.
Collapse
Affiliation(s)
- Di Guo
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunyan Ren
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Amjad Ali
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ronghua Li
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Juan Du
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangyu Liu
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weidou Guan
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zengqiang Zhang
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
17
|
Luo Y, Wu Y, Shu J, Wu Z. Effect of particulate organic matter fractions on the distribution of heavy metals with aided phytostabilization at a zinc smelting waste slag site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:330-341. [PMID: 31325877 DOI: 10.1016/j.envpol.2019.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Particulate organic matter (POM) significantly affects the distribution of heavy metals in contaminated soil. However, the effect of POM on the fate of heavy metals during in situ-aided phytostabilization of waste slag is unclear. The objective of this study was to investigate the distributions of heavy metals such as Cu, Pb, Zn, and Cd in the POM fractions at a zinc smelting waste slag site under in situ-aided phytostabilization after five years. The results showed that the litters and residues of four plants-Arundo donax, Broussonetia papyrifera, Cryptomeria fortunei, and Robinia pseudoacacia-decomposed to form different POM size fractions. The percentage of the 0.05-0.25 mm POM size fraction was the highest, followed by the >1 mm and 0.5-1 mm POM size fractions, and that of the 0.25-0.5 mm POM size fraction was the lowest. The masses of POM derived from the four plants were in the following order: C. fortunei > B. papyrifera > A. donax > R. pseudoacacia. The contents, enrichment coefficients, and mass loads of heavy metals such as Cu, Pb, Zn, and Cd in the POM increased with decreasing POM size, and those in the 0.05-0.25 mm POM size fraction were the highest. The mass load of heavy metals in the POM occurred in the following order: Cu > Cd > Zn > Pb. The surfaces of the POM with coarser and smaller size fractions were smoother and rougher, respectively, and the smaller POM size fractions had larger specific surface areas. The main functional groups in the different POM size fractions were -COOH, -OH, CO, CC, C-H, Si-O, and -CH3. The POM fractions played a significant role in determining the distribution of heavy metals in the revegetated waste slag. These findings have important implications for aided phytostabilization, which significantly influences the fate and speciation of heavy metals at the phytoremediation site.
Collapse
Affiliation(s)
- Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Environment and Geohazard, Ministry of Land and Resources, Guizhou University, Guiyang, 550025, China; College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
| | - Jie Shu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Zhixue Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|