1
|
Li J, Tao L, Sun W, Lu Z, Li J, Qiu S. Arsenic removal from coal by ferric chloride enhanced leaching under ultraviolet irradiation during flue gas desulphurization with coal slurry. ENVIRONMENTAL TECHNOLOGY 2024; 45:5004-5015. [PMID: 38158744 DOI: 10.1080/09593330.2023.2283790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/14/2023] [Indexed: 01/03/2024]
Abstract
During coal combustion, the harmful element arsenic can be released into environment and cause potential significant harm to human beings. Therefore, it is very important to study the removal of arsenic from coal before combustion. In this work, simulated SO2-containing flue gas was used to leach arsenic from coal in a 1 L UV photoreactor. The effects of FeCl3, ultraviolet (UV), pH and the Cl-/Fe3+ molar ratio on arsenic leaching and SO2 removal were experimentally investigated and the enhancing mechanism was analysed. Experimental results demonstrated that FeCl3 and UV could efficiently increase iron and arsenic leaching percentages and SO2 removal efficiency. UV irradiation could induce the oxidation of most trivalent arsenic. The arsenic leaching percentage was significantly larger than that of iron. Low pH was favourable for iron and arsenic leaching. The optimal Cl-/Fe3+ molar ratio was determined to be 3:1. The introduced ferric chloride could not only increase the concentrations of free radicals and ferric iron oxidants, the chloride ion might also impede the formation of passive coatings, thus increasing the arsenic leaching percentage, intensifying the oxidation of trivalent arsenic and enhancing the removal of SO2.
Collapse
Affiliation(s)
- Jintong Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Linlin Tao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Wenshou Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Zhenzhen Lu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Jin Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| | - Shun Qiu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
2
|
Li X, Li T, Jeyakumar P, Li J, Bao Y, Jin X, Zhang J, Guo C, Jiang X, Lu G, Dang Z, Wang H. Effect of biochar-derived DOM on contrasting redistribution of chromate during Schwertmannite dissolution and recrystallization. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134988. [PMID: 38908178 DOI: 10.1016/j.jhazmat.2024.134988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Biochar-derived dissolved organic matter (BDOM), is extensively involved in the recrystallization of minerals and the speciation alteration of associated toxic metals. This study investigates how BDOM extracted from tobacco petiole (TP) or tobacco stalk (TS) biochar influences the speciation repartitioning of Cr(VI) in environments impacted by acid mine drainage (AMD), focusing on interactions with secondary minerals during Schwertmannite (Sch) dissolution and recrystallization. TP-BDOM, rich in lignin-like substances, slowed down the Cr-Sch dissolution and Cr release under acidic conditions compared to TS-BDOM. TP-BDOM's higher O/C component exerts a delayed impact on Cr-Sch stability and Cr(VI) reduction. In-situ ATR-FTIR and 2D-COS analysis showed that carboxylic and aromatic N-OH groups in BDOM could interact with Cr-Sch surfaces, affecting sulfate and Cr(VI) release. It was also observed that slight recrystallization occurred from Cr-Sch to goethite, along with increased Cr incorporation into secondary minerals within TS-BDOM. This enhances our understanding of BDOM's role in Cr(VI) speciation changes in AMD-contaminated sites.
Collapse
Affiliation(s)
- Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Tianfu Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Jiayi Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yanping Bao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jun Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China.
| |
Collapse
|
3
|
Song Y, Luo H, Yang J, Li H, Guo Z, Wang H, Shen Z. Effects of pH on coprecipitation of As(III) with biogenic synthesized schwertmannite and jarosite. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 39221764 DOI: 10.1080/09593330.2024.2391581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/11/2023] [Indexed: 09/04/2024]
Abstract
Secondary iron minerals play significant roles in the immobilization of As under acidic conditions, such as acid mine drainage. However, previous research works have not clarified the effect of pH on As(III) removal through coprecipitation with secondary minerals. Therefore, in this study, we aimed to investigate the discrepancy in As(III) coprecipitation with biogenic synthesized schwertmannite (Sch) and jarosite (Jar) at different pH values. For this, concentrations of Fe2+, TFe, S O 4 2 - , and As(III) in shake flasks were monitored during an overall incubation period of 83 h at initial pH of 1.5, 2.0, and 2.5. In addition, the physicochemical properties of collected minerals after incubation were identified using scanning electron microscopy, X-ray diffraction, pore size distribution, and Brunauer - Emmett - Teller surface area analyses. Our results showed that almost no mineral synthesis and no As(III) removal were detected in coprecipitated schwertmannite (Co-Sch) system and coprecipitated jarosite (Co-Jar) system at an initial pH of 1.5. The TFe precipitation efficiencies and As(III) removal efficiencies increased considerably and morphologies of Co-Sch and Co-Jar improved significantly when the initial pH value increased from 2.0-2.5. The maximum TFe precipitation efficiency and As(III) removal efficiency reached 30.8% and 89.6%, respectively, for the Co-Sch system, and were 47.5% and 37.4%, respectively, for the Co-Jar system. The overall results show that pH significantly affects the formation of Co-Sch and Co-Jar and the behaviour of As(III) coprecipitation.
Collapse
Affiliation(s)
- Yongwei Song
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
| | - Haowei Luo
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
| | - Jun Yang
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
- Institute of Environmental Management and Policy, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
| | - Honghu Li
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
| | - Zehao Guo
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
| | - Heru Wang
- Laboratory Centre for Safety and Environment, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
| | - Zuwu Shen
- Modern Technology Convergence and Engineering Management Research Center, Zhongnan University of Economics and Law, Wuhan, People's Republic of China
| |
Collapse
|
4
|
Tan X, Liu J, Liu M, Zhang Y, Liu Q, Duan G, Cui J, Lin A. Arsenic removal and stabilization behavior of schwertmannite@BC (Sch@BC) in contaminated dual media (water/soil): Via sulfate exchange and chemical complexation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121431. [PMID: 36914151 DOI: 10.1016/j.envpol.2023.121431] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Arsenic (As) is extremely harmful to the ecological environment and human health owing to its high toxicity. The composite that biochar (BC) modified by Schwertmannite (Sch), marked as Sch@BC, were prepared to remediate As-contaminated water and soil with a high efficiency. The characterization results showed that the Sch particles were successfully loaded on the BC, providing more active sites for As(V) adsorption. Compared with the pristine BC, the adsorption capacity of Sch@BC-1 was significantly improved (50.00 mg/g), of which the adsorption capacity kept stable over a wide pH range (pH = 2-8). The adsorption process conformed to pseudo-second-order kinetics and Langmuir isotherm model, which indicated that chemical adsorption was the dominant mechanism and the adsorption rate was controlled by intraparticle diffusion. Sch@BC could adsorb As(V) through electrostatic interaction and ion exchange, forming a FeAsO4 complex and removing As(V). The 5-week soil incubation experiment showed that 3% Sch@BC showed the optimal stabilization effect, while the proportion of stable crystalline Fe/Mn-bound fractionation (F4) increased. Moreover, the results of microbial community diversity showed that Sch@BC interacted with As-resistant dominant microorganisms such as Proteobacteria in soil, promoted their growth and reproduction, and improved the stability of As in soil. In summary, Sch@BC is an excellent agent with broad application prospects for remediating As-contaminated water and soil.
Collapse
Affiliation(s)
- Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jiahao Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yinjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Qi Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100029, PR China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
5
|
Gao K, Zhu H, Zhou W, Hu S, Zhang B, Dang Z, Liu C. Effect of phosphate on ferrihydrite transformation and the associated arsenic behavior mediated by sulfate-reducing bacterium. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130863. [PMID: 36708694 DOI: 10.1016/j.jhazmat.2023.130863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Although PO43- is commonly found in association with iron (oxyhydr)oxide, the effect of PO43- on ferrihydrite reduction, mineralogical transformation, and associated As behavior in sulfate-reducing bacteria (SRB)-rich environments remains unclear. In this study, batch experiments, together with geochemical, mineralogical, and biological analyses, were conducted to elucidate these processes. The results showed that SRB can reduce ferrihydrite via direct and indirect processes, and PO43- promoted ferrihydrite reduction by supporting SRB growth at low and medium PO43- loadings. However, at high loadings, PO43- stabilized the ferrihydrite. PO43- shifted the transformation of ferrihydrite from magnetite and mackinawite to vivianite, which scavenges As effectively by incorporating As into its particle. In systems with 0.5 mM SO42-, PO43- exerted a weak effect on As mobilization. However, in systems with 10 mM SO42-, substantial amounts of As were released into the solution, and PO43- impacted As behavior strongly. Low PO43- loadings increased the mobilization of As because of the competitive adsorption of PO43- on mackinawite. Medium and high PO43- loadings were beneficial for As immobilization because of the substitution of mackinawite by vivianite. These findings have important implications for understanding the biogeochemistry of iron (oxyhydr)oxide and As behavior in SRB-containing sediments.
Collapse
Affiliation(s)
- Kun Gao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huiyan Zhu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenjing Zhou
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shiwen Hu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bowei Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chongxuan Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Tandekar K, Schmidtmann M, Tripathi A, Mishra NK, Supriya S. Light-induced dissolution and concomitant crystallization of a Keggin-type polyoxometalate mimicking a naturally occurring phenomenon. Chem Commun (Camb) 2023; 59:3241-3244. [PMID: 36815372 DOI: 10.1039/d2cc03273b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A suspension of a yellow polycrystalline compound [PPh4]3[PMoVI12O40] in N-methylformanilide (NMF) (in which it is not soluble), on irradiation with sunlight, initiates dissolution via its reduction followed by its crystallization leading to the isolation of single crystals of compound [PPh4]4[PMoVMoVI11O40]·3CH3(C6H5)NCHO (1). Compounds [PPh4]3[PMoVI12O40]·1.75 CH3(C6H5)NCHO (2) and [PPh4]3[PMoVI12O40]·2CH3(C6H5)NCHO (3), each containing an oxidized Keggin anion, are obtained at two different temperatures when the corresponding mother liquor is kept in the dark.
Collapse
Affiliation(s)
- Kesar Tandekar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Marc Schmidtmann
- Institute of Chemistry, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Anjali Tripathi
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Neeraj Kumar Mishra
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Sabbani Supriya
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
7
|
Deng Y, Zhang B, Liu C, Li F, Fang L, Dang Z, Yang C, Xiong Y, He C. Tetracycline-Induced Release and Oxidation of As(III) Coupled with Concomitant Ferrihydrite Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9453-9462. [PMID: 35700062 DOI: 10.1021/acs.est.2c02227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cocontamination with tetracycline (TC) and arsenic (As) is very common in paddy fields. However, the process and underlying mechanism of arsenite (As(III)) transformation on iron mineral surfaces in the presence of antibiotic contaminants remain unclear. In this study, the release and oxidation of As(III) on ferrihydrite (Fh) surfaces and Fh transformation in the presence of TC under both aerobic and anaerobic conditions were investigated. Our results indicated that the TC-induced reductive dissolution of Fh (Fe(II) release) and TC competitive adsorption significantly promote the release of As, especially under anaerobic conditions. The release of As was increased with increasing TC concentration, whereas it decreased with increasing pH. Interestingly, under both aerobic and anaerobic conditions, the addition of TC enhanced the oxidation of As(III) by Fh and induced the partial transformation of Fh to lepidocrocite. Under aerobic conditions, the adsorbed Fe(II) activated the production of reactive oxygen species (·OH and 1O2) from dissolved O2, with Fe(IV) being responsible for As(III) oxidation. Under anaerobic conditions, the abundant oxygen vacancies of Fh affected the oxidation of As(III) during Fh recrystallization. Thus, this study provided new insights into the role of TC on the migration and transformation of As coupled with Fe in soils.
Collapse
Affiliation(s)
- Yurong Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bijie Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chengshuai Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chen Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yu Xiong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chunfeng He
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Shi Y, Zhong R, Zhou L, Lan Y, Guo J. Photoreductive dissolution of schwertmannite loaded with Cr(VI) induced by tartaric acid. CHEMOSPHERE 2021; 276:130127. [PMID: 33690038 DOI: 10.1016/j.chemosphere.2021.130127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Schwertmannite (SCH) as an adsorbent for Cr(VI) removal has been widely investigated. However, there are limited reports on photoreduction driven dissolution of SCH loaded with Cr(VI) (SCH-Cr(VI)) and the fate of Cr(VI) in the presence of dissolved organic matter (DOM). In this study, the effect of tartaric acid (TA) on the stability of SCH-Cr(VI) exposed to simulated solar radiation was examined. The results demonstrated that TA could greatly enhance the release of the dissolved total Fe (TFe) from SCH-Cr(VI). Conversely, the dissolved total Cr (TCr) obviously declined. Low pH promoted the liberation of TFe and TCr. The presence of ions including Al3+, Ca2+, K+ and CO32- exerted different impact on the photoreductive dissolution of SCH-Cr(VI) induced by TA. On the basis of the species distribution of iron and chromium and the characterization of the solid samples, the underlying mechanism is proposed for the transformation and the fate of Cr(VI). Cr(VI) was reduced to Cr(III) by Fe(II) generated from Fe(III)-TAn via ligand to metal charge transfer. The produced Cr(III) was adsorbed by SCH or co-precipitates with Fe(III). Thus, this study helps us to gain an insight into the mobility and fate of Cr(VI) in acid mining drainage containing DOM, and will help design remediation strategies for Cr contamination.
Collapse
Affiliation(s)
- Ying Shi
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruixue Zhong
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yeqing Lan
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Jing Guo
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
9
|
Meng X, Wang X, Zhang C, Yan S, Zheng G, Zhou L. Co-adsorption of As(III) and phenanthrene by schwertmannite and Fenton-like regeneration of spent schwertmannite to realize phenanthrene degradation and As(III) oxidation. ENVIRONMENTAL RESEARCH 2021; 195:110855. [PMID: 33581092 DOI: 10.1016/j.envres.2021.110855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Co-contamination of arsenic and polycyclic aromatic hydrocarbons (PAHs) in groundwater is frequently reported, and it is thus necessary to develop efficient techniques to tackle this problem. Here, we evaluated the feasibility of utilizing schwertmannite to co-adsorb As(III) and phenanthrene from water solution and regenerating spent schwertmannite via a heterogeneous Fenton-like reaction to degrade adsorbed phenanthrene and meanwhile oxidize adsorbed As(III). The results suggested that schwertmannite with a hedgehog-like morphology was superior to that with a smooth surface for the adsorption removal of As(III) or phenanthrene because of the much higher BET surface area and hydroxyl proportion of the former one, and schwertmannite formed at 72 h incubation effectively co-adsorbed As(III) and phenanthrene from water solution. The adsorption of As(III) and phenanthrene on schwertmannite did not interfere with each other, while the acidic initial solution pH delayed the adsorption of As(III) on schwertmannite but enhanced the adsorption capacity for phenanthrene. The adsorption of As(III) on schwertmannite mainly involved its exchange with SO42- (outer-sphere or inner-sphere) and its complexation with iron hydroxyl surface groups, and phenanthrene adsorption mainly occurred through cation-π bonding and OH-π interaction. During the adsorption-regeneration processes, schwertmannite adsorbed As(III) and phenanthrene firstly, and then it can be successfully regenerated via Fenton-like reaction catalyzed by itself to effectively degrade the adsorbed phenanthrene and meanwhile oxidize the adsorbed As(III) to As(V). Therefore, schwertmanite is an outstanding environmental adsorbent to decontaminate As(III) and phenanthrene co-existing in groundwater.
Collapse
Affiliation(s)
- Xiaoqing Meng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunmei Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Su Yan
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
10
|
Gao K, Hu Y, Guo C, Ke C, Lu G, Dang Z. Mobilization of arsenic during reductive dissolution of As(V)-bearing jarosite by a sulfate reducing bacterium. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123717. [PMID: 33254757 DOI: 10.1016/j.jhazmat.2020.123717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 06/12/2023]
Abstract
Microbial sulfidization of arsenic (As)-bearing jarosite involves complex processes and is yet to be fully elucidated. Here, we investigated the behavior of As during reductive dissolution of As(V)-bearing jarosite by a pure sulfate reducing bacterium with or without dissolved SO42- amendment. Changes of aqueous chemistry, mineralogical characteristics, and As speciation were examined in batch experiments. The results indicated that jarosite was mostly replaced by mackinawite in the system with added SO42-. In the medium without additional SO42-, mackinawite, vivianite, pyrite, and magnetite formed as secondary Fe minerals, though 24.55 % of total Fe was in form of an aqueous Fe2+ phase. The produced Fe2+ in turn catalyzed the transformation of jarosite. At the end of the incubation, 41.99 % and 48.10 % of As in the solid phase got released into the aqueous phase in the systems with and without added SO42-, respectively. The addition of dissolved SO42- mitigated the mobilization of As into the aqueous phase. In addition, all As5+ on the solid surface was reduced to As3+ during the microbial sulfidization of As-bearing jarosite. These findings are important for a better understanding of geochemical cycling of elements As, S, and Fe in acid mine drainage and acid sulfate soil environments.
Collapse
Affiliation(s)
- Kun Gao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Yue Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Changdong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Zabiszak M, Nowak M, Hnatejko Z, Grajewski J, Ogawa K, Kaczmarek MT, Jastrzab R. Thermodynamic and Spectroscopic Studies of the Complexes Formed in Tartaric Acid and Lanthanide(III) Ions Binary Systems. Molecules 2020; 25:molecules25051121. [PMID: 32138188 PMCID: PMC7179146 DOI: 10.3390/molecules25051121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 11/16/2022] Open
Abstract
Binary complexes of tartaric acid with lanthanide(III) ions were investigated. The studies have been performed in aqueous solution using the potentiometric method with computer analysis of the data for detection of the complexes set, determination of the stability constants of these compounds. The mode of the coordination of complexes found was determined using spectroscopy, which shows: Infrared, circular dichroism, ultraviolet, visible as well as luminescence spectroscopy. The overall stability constants of the complexes as well as the equilibrium constants of the reaction were determined. Analysis of the equilibrium constants of the reactions and spectroscopic data allowed the effectiveness of the carboxyl groups in the process of complex formation.
Collapse
Affiliation(s)
- Michal Zabiszak
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; (M.N.); (Z.H.); (J.G.); (M.T.K.); (R.J.)
- Correspondence: ; Tel.: +48-618-291-627
| | - Martyna Nowak
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; (M.N.); (Z.H.); (J.G.); (M.T.K.); (R.J.)
| | - Zbigniew Hnatejko
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; (M.N.); (Z.H.); (J.G.); (M.T.K.); (R.J.)
| | - Jakub Grajewski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; (M.N.); (Z.H.); (J.G.); (M.T.K.); (R.J.)
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Ishikawa, Poland;
| | - Malgorzata T. Kaczmarek
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; (M.N.); (Z.H.); (J.G.); (M.T.K.); (R.J.)
| | - Renata Jastrzab
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; (M.N.); (Z.H.); (J.G.); (M.T.K.); (R.J.)
| |
Collapse
|