1
|
Chen Y, Li X, Zhang X, Zhang Y, Gao W, Wang R, He D. Air conditioner filters become sinks and sources of indoor microplastics fibers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118465. [PMID: 34748889 DOI: 10.1016/j.envpol.2021.118465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Indoor airborne microplastics fibers (MPFs) are emerging contaminants of growing concern. Nowadays, air conditioners (ACs) are widely used in indoor environments. However, little is known about their impact on the distribution of indoor MPFs. In this study, we first disclosed the prevalence of MPF contamination in filters for indoor split ACs used in living rooms, dormitories, and offices. The average density of microfibers was 1.47-21.4 × 102 items/cm2, and a total 27.7-35.0% of fibers were MPFs. Of these fibers, the majority were polyester (45.3%), rayon (27.8%), and cellophane (20.1%). We further tracked the long-term accumulation of MPFs on AC filters in three types of rooms, and demonstrated that dormitories showed relatively heavy accumulation especially after running for 35-42 days. Furthermore, we found that simulative AC filters which had been lined with PET MPFs could effectively release those MPFs into indoor air, propelling them away from the ACs at varying distances. Statistical analysis showed that the estimated daily intake of MPFs (5-5000 μm length) from AC filters would increase gradually with their usage, with the intake volume reaching up to 11.2 ± 2.2-44.0 ± 8.9 items/kg-BW/day by the 70th day, although this number varied among people of different ages. Altogether, these findings suggest that AC filters can act as both a sink and a source of microplastics fibers. Therefore, AC filters should be evaluated not only for their substantial impact on the distribution of indoor airborne MPFs, but also for their role in the prevalence of the related health risks.
Collapse
Affiliation(s)
- Yingxin Chen
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai, 200241, China
| | - Xinyu Li
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai, 200241, China
| | - Xiaoting Zhang
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai, 200241, China
| | - Yalin Zhang
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai, 200241, China
| | - Wei Gao
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai, 200241, China
| | - Ruibin Wang
- Instrumental Analysis Centre, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Defu He
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
2
|
Chen X, Cheng X, Meng H, Selvaraj KK, Li H, He H, Du W, Yang S, Li S, Zhang L. Past, present, and future perspectives on the assessment of bioavailability/bioaccessibility of polycyclic aromatic hydrocarbons: A 20-year systemic review based on scientific econometrics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145585. [PMID: 33607432 DOI: 10.1016/j.scitotenv.2021.145585] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Bioaccessibility/bioavailability (bioac-bioav) is an important criterion in the risk assessment of polycyclic aromatic hydrocarbons (PAHs), especially in the restoration of contaminated sites. Although, the bioac-bioav concept is widely employed in PAH risk assessment for both humans and wildlife, their growth and integration in risk assessment models are seldom discussed. Consequently, the relevant literature listed on Web of Science (WOS)™ was retrieved and analyzed using the bibliometric software Citespace in order to gain a comprehensive understanding of this issue. Due to the limitations of the literature search software, we manually searched the articles about PAHs bioac-bioav that were published before 2000. This stage focuses on research on the distribution coefficient of PAHs between different environmental phases and laid the foundation for the adsorption-desorption of PAHs in subsequent studies of the bioac-bioav of PAHs. The research progress on PAH bioac-bioav from 2000 to the present was evaluated using the Citespace software based on country- and discipline-wise publication volumes and research hotspots. The development stages of PAH bioac-bioav after 2000 were divided into four time segments. The first three segments (2000-2005, 2006-2010, and 2011-2015) focused on the degradation of PAHs and their in vivo (bioavailability)-in vitro (bioaccessibility) evaluation method and risk assessment. Meanwhile, the current (2016-present) research focuses on the establishment of analytical methods for assessing PAH derivatives at environmental concentrations and the optimization of various in vitro digestion methods, including chemical optimization (sorptive sink) and biological optimization (Caco-2 cell). The contents are aimed at supplying researchers with a deeper understanding of the development of PAH bioac-bioav.
Collapse
Affiliation(s)
- Xianxian Chen
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Han Meng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Kumar Krishna Selvaraj
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China.
| | - Huiming Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian 354300, PR China.
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| |
Collapse
|
3
|
Wu J, Tou F, Yang Y, Liu C, Hower JC, Baalousha M, Wang G, Liu M, Hochella MF. Metal-Containing Nanoparticles in Low-Rank Coal-Derived Fly Ash from China: Characterization and Implications toward Human Lung Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6644-6654. [PMID: 33969690 DOI: 10.1021/acs.est.1c00434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Characterization of nanoparticles (NPs) in coal fly ashes (CFAs) is critical for better understanding the potential health-related risks resulting from coal combustion. Based on single-particle (SP)-inductively coupled plasma mass spectrometry (ICP-MS) coupled with transmission electron microscopy techniques, this study is the first to determine the concentrations and sizes of metal-containing NPs in low-rank coal-derived fly ashes. Despite only comprising a minor component of the studied CFAs by mass, NPs were the dominant fraction by particle number. Fe- and Ti-containing NPs were identified as the dominant NPs with their particle number concentration ranging from 2.5 × 107 to 2.5 × 108 particles/mg. In addition, the differences of Fe-/Ti-containing NPs in various CFAs were regulated by the coalification degree of feed coals and combustion conditions of all of the low-rank CFAs tested. In the cases where these NPs in CFAs become airborne and are inhaled, they can be taken up in pulmonary interstitial fluids. This study shows that in Gamble's solution (a lung fluid simulant), 51-87% of Fe and 63-89% of Ti (ratio of the mass of Fe-/Ti-containing NPs to the total mass of Fe/Ti) exist in the NP form and remain suspended in pulmonary fluid simulants. These NPs are bioavailable and may induce lung tissue damage.
Collapse
Affiliation(s)
- Jiayuan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Feiyun Tou
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chang Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - James C Hower
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, Kentucky 40511, United States
- Department of Earth & Environmental Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29201, United State
| | - Gehui Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Michael F Hochella
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Earth Systems Science Division, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
4
|
Ren H, Yu Y, An T. Bioaccessibilities of metal(loid)s and organic contaminants in particulates measured in simulated human lung fluids: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115070. [PMID: 32806460 DOI: 10.1016/j.envpol.2020.115070] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Particle-bound pollutants can pose a health risk to humans. Inhalation exposure evaluated by total contaminant concentrations significantly overestimates the potential risk. To assess the risk more accurately, bioavailability, which is the fraction that enters into the systemic circulation, should be considered. Researchers have replaced bioavailability by bioaccessibility due to the rapid and cost-efficient measurement for the latter, especially for assessment by oral ingestion. However, contaminants in particulates have different behavior when inhaled than when orally ingested. Some of the contaminants are exhaled along with exhalation, and others are deposited in the lung with the particulates. In addition, a fraction of the contaminants is released into the lung fluid and absorbed by the lung, and another fraction enters systemic circulation under the action of cell phagocytosis on particulates. Even if the release fraction, i.e., release bioaccessibility, is considered, the measurement faces many challenges. The present study highlights the factors influencing release bioaccessibility and the incorporation of inhalation bioaccessibility into the risk assessment of inhaled contaminants. Currently, there are three types of extraction techniques for simulated human lung fluids, including simple chemical solutions, sequential extraction techniques, and physiologically based techniques. The last technique generally uses three kinds of solution: Gamble's solution, Hatch's solution, and artificial lysosomal fluid, which are the most widely used physiologically based simulated human lung fluids. External factors such as simulated lung fluid composition, pH, extraction time, and sorption sinks can affect release bioaccessibility, whereas particle size and contaminant properties are important internal factors. Overall, release bioaccessibility is less used than bioaccessibility considering the deposition fraction when assessing the risk of contaminants in inhaled particulates. The release bioaccessibility measurement poses two main challenges: developing a unified, accurate, stable, simple, and systematic biologically based method, and validating the method through in-vivo assays.
Collapse
Affiliation(s)
- Helong Ren
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| |
Collapse
|
5
|
Quantitative structure-property relationship (QSPR) study to predict retention time of polycyclic aromatic hydrocarbons using the random forest and artificial neural network methods. Struct Chem 2020. [DOI: 10.1007/s11224-019-01476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|