1
|
Sevgen S, Kara G, Kir AS, Şahin A, Boyaci E. A critical review of bioanalytical and clinical applications of solid phase microextraction. J Pharm Biomed Anal 2025; 252:116487. [PMID: 39378761 DOI: 10.1016/j.jpba.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Studying the functions, mechanisms, and effects of drugs and other exogenous compounds on biological systems, together with investigations performed to understand biosystems better, comprises one of the most fascinating areas of research. Although classical sample preparation techniques are dominantly used to infer the relevant information from the investigated system, they fail to meet various imperative requirements, such as being environmentally friendly, applicable in-vivo, and compatible with online analysis. As a chameleon in the analytical toolbox, solid phase microextraction (SPME) is one of the best tools available for studying biological systems in unconventional ways. In this review, SPME is spotlighted, and its capability for bioanalytical applications, including drug analysis, untargeted and targeted metabolomics, in-vivo and clinical studies, is scrutinized based on studies reported in the past five years. In addition, novel extractive phases and instrumental coupling strategies developed to serve bioanalytical research are discussed to give the perspective for state-of-the-art and future developments. The literature assessment showed that SPME could act as a critical tool to investigate in-vivo biological systems and provide information about the elusive portion of the metabolome. Moreover, recently introduced miniaturized SPME probes further improved the low-invasive nature of the sampling and enabled sampling even from a single cell. The coupling of SPME directly to mass spectrometry significantly reduced the total analytical workflow and became one of the promising tools suitable for fast diagnostic purposes and drug analysis. The numerous applications and advancements reported in bioanalysis using SPME show that it will continue to be an indispensable technique in the future.
Collapse
Affiliation(s)
- Sılanur Sevgen
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Gökşin Kara
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Aysegul Seyma Kir
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Alper Şahin
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Ezel Boyaci
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye.
| |
Collapse
|
2
|
Li N, Zhang Z, Li G. Recent advance on microextraction sampling technologies for bioanalysis. J Chromatogr A 2024; 1720:464775. [PMID: 38452559 DOI: 10.1016/j.chroma.2024.464775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The contents of target substances in biological samples are usually at low concentration levels, and the matrix of biological samples is usually complex. Sample preparation is considered a very critical step in bioanalysis. At present, the utilization of microextraction sampling technology has gained considerable prevalence in the realm of biological analysis. The key developments in this field focus on the efficient microextraction media and the miniaturization and automation of adaptable sample preparation methods currently. In this review, the recent progress on the microextraction sampling technologies for bioanalysis has been introduced from point of view of the preparation of microextraction media and the microextraction sampling strategies. The advance on the microextraction media was reviewed in detail, mainly including the aptamer-functionalized materials, molecularly imprinted polymers, carbon-based materials, metal-organic frameworks, covalent organic frameworks, etc. The advance on the microextraction sampling technologies was summarized mainly based on in-vivo sampling, in-vitro sampling and microdialysis technologies. Moreover, the current challenges and perspective on the future trends of microextraction sampling technologies for bioanalysis were briefly discussed.
Collapse
Affiliation(s)
- Na Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Bilhorn C, Brua RB, Izral NM, Yates AG. Evidence of interregional similarity in crayfish metabolomes at reference sites: Progress towards the metabolome as a biomonitoring tool. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120076. [PMID: 38211428 DOI: 10.1016/j.jenvman.2024.120076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
It has been proposed that biomonitoring may benefit from the use of metabolomics (the study of all small molecules in an organism) to detect sub-lethal organism stress through changes in the metabolite profile (i.e., the metabolome). However, to integrate the metabolome into biomonitoring programs the amount of natural variability among and within populations of indicator taxa must be established prior to generating a reference condition. This study determined variation in the metabolome among ecoregion and stream of origin in the northern crayfish (Faxonius virilis) and if that variation inhibited detection of stressor effects at sites exposed to human activities. We collected crayfish from seven minimally disturbed streams (i.e., reference streams), distributed across three level II ecoregions in central Canada and compared their metabolomes. We found ecoregion and stream origin were poor predictors of crayfish metabolomes. This result suggests crayfish metabolomes were similar, despite differing environmental conditions. Metabolomes of crayfish collected from three stream sites exposed to agricultural activity and municipal wastewater (i.e., test sites) were then compared to the crayfish metabolomes from the seven reference streams. Findings showed that crayfish metabolomes from test sites were strongly differentiated from those at all reference sites. The consistency in the northern crayfish metabolome at the studied reference streams indicates that a single reference condition may effectively detect impacts of human activities across the sampled ecoregions.
Collapse
Affiliation(s)
- Cora Bilhorn
- Department of Geography, Western University, London, Ontario, Canada
| | - Robert B Brua
- National Hydrologic Research Centre, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - Natalie M Izral
- Department of Geography, Western University, London, Ontario, Canada
| | - Adam G Yates
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
4
|
Machuca-Sepúlveda J, Miranda J, Lefin N, Pedroso A, Beltrán JF, Farias JG. Current Status of Omics in Biological Quality Elements for Freshwater Biomonitoring. BIOLOGY 2023; 12:923. [PMID: 37508354 PMCID: PMC10376755 DOI: 10.3390/biology12070923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023]
Abstract
Freshwater ecosystems have been experiencing various forms of threats, mainly since the last century. The severity of this adverse scenario presents unprecedented challenges to human health, water supply, agriculture, forestry, ecological systems, and biodiversity, among other areas. Despite the progress made in various biomonitoring techniques tailored to specific countries and biotic communities, significant constraints exist, particularly in assessing and quantifying biodiversity and its interplay with detrimental factors. Incorporating modern techniques into biomonitoring methodologies presents a challenging topic with multiple perspectives and assertions. This review aims to present a comprehensive overview of the contemporary advancements in freshwater biomonitoring, specifically by utilizing omics methodologies such as genomics, metagenomics, transcriptomics, proteomics, metabolomics, and multi-omics. The present study aims to elucidate the rationale behind the imperative need for modernization in this field. This will be achieved by presenting case studies, examining the diverse range of organisms that have been studied, and evaluating the potential benefits and drawbacks associated with the utilization of these methodologies. The utilization of advanced high-throughput bioinformatics techniques represents a sophisticated approach that necessitates a significant departure from the conventional practices of contemporary freshwater biomonitoring. The significant contributions of omics techniques in the context of biological quality elements (BQEs) and their interpretations in ecological problems are crucial for biomonitoring programs. Such contributions are primarily attributed to the previously overlooked identification of interactions between different levels of biological organization and their responses, isolated and combined, to specific critical conditions.
Collapse
Affiliation(s)
- Jorge Machuca-Sepúlveda
- Doctoral Program on Natural Resources Sciences, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4780000, Chile
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandro Pedroso
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
5
|
Roszkowska A, Klejbor I, Bogusiewicz J, Plenis A, Bojko B, Kowalik K, Moryś J, Bączek T. Monitoring of age- and gender-related alterations of endocannabinoid levels in selected brain regions with the use of SPME probes. Metabolomics 2023; 19:40. [PMID: 37043024 PMCID: PMC10097736 DOI: 10.1007/s11306-023-02007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/05/2023] [Indexed: 04/13/2023]
Abstract
INTRODUCTION The endocannabinoid system consists of different types of receptors, enzymes and endocannabinoids (ECs), which are involved in several physiological processes, but also play important role in the development and progression of central nervous system disorders. OBJECTIVES The purpose of this study was to apply precise and sensitive methodology for monitoring of four ECs, namely anandamide (AEA), 2-arachidonoyl glycerol (2-AG), N-arachidonoyl dopamine (NADA), 2-arachidonyl glyceryl ether (2-AGe) in selected brain regions of female and male rats at different stages of development (young, adult and old). METHODS Biocompatible solid-phase microextraction (SPME) probes were introduced into the intact (non-homogenized) brain structures for isolation of four ECs, and the extracts were subjected to LC-MS/MS analysis. Two chemometric approaches, namely hierarchical cluster analysis (HCA) and Principal Component Analysis (PCA) were applied to provide more information about the levels of 2-AG and AEA in different brain structures. RESULTS 2-AG and AEA were extracted and could be quantified in each brain region; the level of 2-AG was significantly higher in comparison to the level of AEA. Two highly unstable ECs, NADA and 2-AGe, were captured by SPME probes from intact brain samples for the first time. CONCLUSION SPME probes were able to isolate highly unstable endogenous compounds from intact tissue, and provided new tools for precise analysis of the level and distribution of ECs in different brain regions. Monitoring of ECs in brain samples is important not only in physiological conditions, but also may contribute to better understanding of the functioning of the endocannabinoid system in various disorders.
Collapse
Affiliation(s)
- Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland.
| | - Ilona Klejbor
- Department of Anatomy, Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Joanna Bogusiewicz
- Department of Pharmacodynamics and Molecular Pharmacology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Alina Plenis
- Department of Analytical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Katarzyna Kowalik
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Janusz Moryś
- Department of Normal Anatomy, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
6
|
Niu C, Zhang C, Liu J. Capture-SELEX of DNA Aptamers for Estradiol Specifically and Estrogenic Compounds Collectively. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17702-17711. [PMID: 36441874 DOI: 10.1021/acs.est.2c05808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Estrogenic compounds such as estrone (E1), 17β-estradiol (E2), and 17α-ethynylestradiol (EE2) are serious environmental contaminants due to their potent biological activities. At least six selections were previously reported to obtain DNA aptamers for E2, highlighting its environmental importance. A careful analysis revealed that the previous aptamers either are too long or do not bind optimally. Herein, a series of new aptamers were obtained from the capture-SELEX method with dissociation constants down to 30 nM as determined by isothermal titration calorimetry (ITC). Two aptamers were converted to structure-switching fluorescent biosensors, which achieved a limit of detection down to 3.3 and 9.1 nM E2, respectively. One aptamer showed similar binding affinities to all the three estrogens, while the other aptamer is more selective for E2. Both aptamers required Mg2+ for binding. The proposed sensors were successfully applied in the determination of E2 in wastewater. Moreover, comparisons were made with previous aptamers based on primary sequence alignment and secondary structures. Among previously reported truncated aptamers, ITC showed binding only in one of them. The newly selected aptamers have the combined advantages of small size and high affinities.
Collapse
Affiliation(s)
- Chenqi Niu
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
7
|
Kahremanoğlu K, Tosun H, Eroğlu AE, Boyaci E. Recent progress in wearable extractive sampling technology. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Yu LD, Li N, Tong YJ, Han J, Qiu J, Ye YX, Chen G, Ouyang G, Zhu F. From exogenous to endogenous: Advances in vivo sampling in living systems. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Costa Queiroz ME, Donizeti de Souza I, Gustavo de Oliveira I, Grecco CF. In vivo solid phase microextraction for bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Yu M, Roszkowska A, Pawliszyn J. In Vivo Solid-Phase Microextraction and Applications in Environmental Sciences. ACS ENVIRONMENTAL AU 2022; 2:30-41. [PMID: 37101756 PMCID: PMC10114724 DOI: 10.1021/acsenvironau.1c00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solid-phase microextraction (SPME) is a well-established sample-preparation technique for environmental studies. The application of SPME has extended from the headspace extraction of volatile compounds to the capture of active components in living organisms via the direct immersion of SPME probes into the tissue (in vivo SPME). The development of biocompatible coatings and the availability of different calibration approaches enable the in vivo sampling of exogenous and endogenous compounds from the living plants and animals without the need for tissue collection. In addition, new geometries such as thin-film coatings, needle-trap devices, recession needles, coated tips, and blades have increased the sensitivity and robustness of in vivo sampling. In this paper, we detail the fundamentals of in vivo SPME, including the various extraction modes, coating geometries, calibration methods, and data analysis methods that are commonly employed. We also discuss recent applications of in vivo SPME in environmental studies and in the analysis of pollutants in plant and animal tissues, as well as in human saliva, breath, and skin analysis. As we show, in vivo SPME has tremendous potential for the targeted and untargeted screening of small molecules in living organisms for environmental monitoring applications.
Collapse
Affiliation(s)
- Miao Yu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Gdansk 80-416, Poland
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
11
|
Core-shell structured Fe 2O 3/CeO 2@MnO 2 microspheres with abundant surface oxygen for sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons from water. Mikrochim Acta 2021; 188:337. [PMID: 34510313 DOI: 10.1007/s00604-021-05004-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Core-shell structured Fe2O3/CeO2@MnO2 microspheres were fabricated and used as solid-phase microextraction coating for determination of polycyclic aromatic hydrocarbons (PAHs) in water samples. XPS spectra demonstrated the generation of abundant surface oxygen on Fe2O3/CeO2@MnO2 microspheres, which provided binding sites for enhancement of analyte extraction. Under optimized conditions, the proposed method presented good linearity in the concentration range 0.04-100 ng mL-1, with low limits of detection varying from 0.38 to 3.57 ng L-1 for eight PAHs. Relative standard deviations for a single fiber and five batches of fibers were in the ranges of 4.1-8.2% and 7.1-11.4%, respectively. The proposed method was successfully used for determination of PAHs in real river water samples with recoveries ranging from 87.1 to 115.9%. The proposed method using as-prepared Fe2O3/CeO2@MnO2 microspheres as SPME coating exhibit significant potential for real sample analysis due to its excellent reproducibility, high sensitivity, and good linearity.
Collapse
|
12
|
Godage NH, Olomukoro AA, Emmons RV, Gionfriddo E. In vivo analytical techniques facilitated by contemporary materials. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Jeffries KM, Teffer A, Michaleski S, Bernier NJ, Heath DD, Miller KM. The use of non-lethal sampling for transcriptomics to assess the physiological status of wild fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110629. [PMID: 34058376 DOI: 10.1016/j.cbpb.2021.110629] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Fishes respond to different abiotic and biotic stressors through changes in gene expression as a part of an integrated physiological response. Transcriptomics approaches have been used to quantify gene expression patterns as a reductionist approach to understand responses to environmental stressors in animal physiology and have become more commonly used to study wild fishes. We argue that non-lethal sampling for transcriptomics should become the norm for assessing the physiological status of wild fishes, especially when there are conservation implications. Processes at the level of the transcriptome provide a "snapshot" of the cellular conditions at a given time; however, by using a non-lethal sampling protocol, researchers can connect the transcriptome profile with fitness-relevant ecological endpoints such as reproduction, movement patterns and survival. Furthermore, telemetry is a widely used approach in fisheries to understand movement patterns in the wild, and when combined with transcriptional profiling, provides arguably the most powerful use of non-lethal sampling for transcriptomics in wild fishes. In this review, we discuss the different tissues that can be successfully incorporated into non-lethal sampling strategies, which is particularly useful in the context of the emerging field of conservation transcriptomics. We briefly describe different methods for transcriptional profiling in fishes from high-throughput qPCR to whole transcriptome approaches. Further, we discuss strategies and the limitations of using transcriptomics for non-lethally studying fishes. Lastly, as 'omics' technology continues to advance, transcriptomics paired with different omics approaches to study wild fishes will provide insight into the factors that regulate phenotypic variation and the physiological responses to changing environmental conditions in the future.
Collapse
Affiliation(s)
- Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada.
| | - Amy Teffer
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, United States of America
| | - Sonya Michaleski
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Daniel D Heath
- Department of Integrative Biology, Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
14
|
Pang YH, Huang YY, Shen XF, Wang YY. Electro-enhanced solid-phase microextraction with covalent organic framework modified stainless steel fiber for efficient adsorption of bisphenol A. Anal Chim Acta 2021; 1142:99-107. [PMID: 33280708 DOI: 10.1016/j.aca.2020.10.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 11/29/2022]
Abstract
In this work, electro-enhanced solid-phase microextraction (EE-SPME) and covalent organic framework (COF) were adopted to improve the extraction efficiency. A conductive COF synthesized of 2,6-diaminoanthraquinone (DQ) and 1,3,5-triformylphloroglucinol (TP) was in situ bonded to the stainless steel wire via facile solution-phase approach and used as the EE-SPME fiber coating to preconcentrate a typical endocrine disruptor bisphenol A (BPA). Compared with conventional SPME, the DQTP bonded fiber coupled with EE-SPME device exhibited higher extraction efficiency and achieved extraction equilibrium within 10 min. The proposed approach based on EE-SPME and gas chromatography coupled with flame ionization detector gave a linear range of 0.05-10 μg mL-1 and detection limit of 3 μg L-1 (S/N = 3) with good precision (<6.7%) and reproducibility (<7.1%) spiked with 0.1, 0.5, 1.0 μg mL-1 BPA. Quantitative determination of BPA in extracts of food packagings (mineral water bottles, milk boxes and milk tea cups) was achieved with recoveries from 88.6 to 118.0%.
Collapse
Affiliation(s)
- Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yu-Ying Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yi-Ying Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
15
|
Wang C, Chen M, Hu Q, Bai H, Wang C, Ma Q. Non-lethal microsampling and rapid identification of multi-residue veterinary drugs in aquacultured fish by direct analysis in real time coupled with quadrupole-Orbitrap high-resolution mass spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Sun YC, Han SC, Yao MZ, Wang YM, Geng LW, Wang P, Lu WH, Liu HB. High-throughput metabolomics method based on liquid chromatography-mass spectrometry: Insights into the underlying mechanisms of salinity-alkalinity exposure-induced metabolites changes in Barbus capito. J Sep Sci 2020; 44:497-512. [PMID: 33164302 DOI: 10.1002/jssc.202000861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/13/2023]
Abstract
It is critical to investigate the adaptive development and the physiological mechanism of fish in external stimulation. In this study, the response of Barbus capito to salinity-alkalinity exposure was explored by high-throughput nontargeted and liquid chromatography-mass spectrometry-based metabolomics to investigate metabolic biomarker and pathway changes. Meanwhile, the biochemical indexes of Barbus capito were measured to discover the chronic impairment response to salinity-alkalinity exposures. A total of 29 tissue metabolites were determined to deciphering the endogenous metabolic changes of fishes during the different concentration salinity-alkalinity exposures environment, which were mainly involved in the key metabolism including the phenylalanine, tyrosine, and tryptophan biosynthesis, arachidonic acid metabolism, pyruvate metabolism, citrate cycle, and glycerophospholipid metabolism. Finally, we found the amino acid metabolism as key target was associated with the endogenous metabolites and metabolic pathways of Barbus capito to salinity-alkalinity exposures. In conclusion, metabolomics is a potentially powerful tool to reveal the mechanism information of fish in various exposure environments.
Collapse
Affiliation(s)
- Yan-Chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Shi-Cheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Ming-Zhu Yao
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China.,Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P. R. China
| | - Yu-Mei Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Long-Wu Geng
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| | - Wei-Hong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Hong-Bai Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences/Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin, P. R. China
| |
Collapse
|
17
|
Asgari S, Bagheri H, Es-Haghi A. Super-porous semi-interpenetrating polymeric composite prepared in straw for micro solid phase extraction of antibiotics from honey, urine and wastewater. J Chromatogr A 2020; 1631:461576. [PMID: 33002706 DOI: 10.1016/j.chroma.2020.461576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 11/19/2022]
Abstract
A cryogel-based semi-interpenetrating polymer network (Cryo-SIPN) was prepared in which conductive polymers such as polyaniline (PANI) and polypyrrole (PPy) were formed within the super porous network of acrylic acid cryogel. For completion of cryo-polymerization, all the constituent solutions were severely mixed and placed into the plastic straws and kept at -20°C and then the synthesized cyrogels were cut into the 1-cm length and freeze dried after washing with water. The Cryo-SIPN polymeric composite was applied in micro solid phase extraction (µSPE) of some selected antibiotic residues from various samples. The µSPE method combined with a high performance liquid chromatography-ultraviolet (HPLC-UV) system allowed trace quantification of antibiotic residues in the honey and water samples while the significant variables were optimized using a central composite design (CCD) to find optimum conditions. The method performance was satisfactory with recovery ranges from 70.0 to 109%. The limits of detection (S/N = 3) and quantification (S/N = 10) for all samples were within the 17-50 μg kg-1 and 47-140 μg kg-1 range, respectively. The relative standard deviation was less than 10 % for antibiotics in the foodstuff and water samples. The validated Cryo-SIPN-µSPE in conjunction with HPLC-UV, proved to be versatile, efficient and robust while its capability toward the trace determination of drugs residues in real-life samples is demonstrated in this work.
Collapse
Affiliation(s)
- Sara Asgari
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Habib Bagheri
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| | - Ali Es-Haghi
- Department of Physico Chemistry, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| |
Collapse
|
18
|
Lendor S, Olkowicz M, Boyaci E, Yu M, Diwan M, Hamani C, Palmer M, Reyes-Garcés N, Gómez-Ríos GA, Pawliszyn J. Investigation of Early Death-Induced Changes in Rat Brain by Solid Phase Microextraction via Untargeted High Resolution Mass Spectrometry: In Vivo versus Postmortem Comparative Study. ACS Chem Neurosci 2020; 11:1827-1840. [PMID: 32407623 DOI: 10.1021/acschemneuro.0c00270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Analysis of brain samples obtained postmortem remains a standard approach in neuroscience, despite often being suboptimal for inferring roles of small molecules in the pathophysiology of brain diseases. Sample collection and preservation further hinders conclusive interpretation of biomarker analysis in autopsy samples. We investigate purely death-induced changes affecting rat hippocampus in the first hour of postmortem interval (PMI) by means of untargeted liquid chromatography-mass spectrometry-based metabolomics. The unique possibility of sampling the same brain area of each animal both in vivo and postmortem was enabled by employing solid phase microextraction (SPME) probes. Four millimeter probes coated with mixed mode extraction phase were used to sample awake, freely roaming animals, with 2 more sampling events performed after death. Significant changes in brain neurochemistry were found to occur as soon as 30 min after death, further progressing with increasing PMI, evidenced by relative changes in levels of metabolites and lipids. These included species from several distinct groups, which can be classified as engaged in energy metabolism-related processes, signal transduction, neurotransmission, or inflammatory response. Additionally, we perform thorough analysis of interindividual variability in response to death, which provides insights into how this aspect can obscure conclusions drawn from an untargeted study at single metabolite and pathway level. The results suggest high demand for systematic studies examining the PMI time course with in vivo sampling as a starting point to eliminate artifacts in the form of neurochemical changes assumed to occur in vivo.
Collapse
Affiliation(s)
- Sofia Lendor
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Mariola Olkowicz
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Ezel Boyaci
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Miao Yu
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Mustansir Diwan
- Neuroimaging Research Section, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Clement Hamani
- Neuroimaging Research Section, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Michael Palmer
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Nathaly Reyes-Garcés
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - German Augusto Gómez-Ríos
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
19
|
Cárdenas-Soracá DM, Singh V, Nazdrajić E, Vasiljević T, Grandy JJ, Pawliszyn J. Development of thin-film solid-phase microextraction coating and method for determination of artificial sweeteners in surface waters. Talanta 2020; 211:120714. [DOI: 10.1016/j.talanta.2020.120714] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 01/10/2023]
|
20
|
Abstract
In vivo solid-phase microextraction (SPME) has been recently proposed for the extraction, clean-up and preconcentration of analytes of biological and clinical concern. Bioanalysis can be performed by sampling exo- or endogenous compounds directly in living organisms with minimum invasiveness. In this context, innovative and miniaturized devices characterized by both commercial and lab-made coatings for in vivo SPME tissue sampling have been proposed, thus assessing the feasibility of this technique for biomarker discovery, metabolomics studies or for evaluating the environmental conditions to which organisms can be exposed. Finally, the possibility of directly interfacing SPME to mass spectrometers represents a valuable tool for the rapid quali- and quantitative analysis of complex matrices. This review article provides a survey of in vivo SPME applications focusing on the extraction of tissues, cells and simple organisms. This survey will attempt to cover the state-of- the-art from 2014 up to 2019.
Collapse
|
21
|
Liu S, Fang S, Huang Y, Xiang Z, Ouyang G. A heterogeneous pore decoration strategy on a hydrophobic microporous polymer for high-coverage capture of metabolites. Chem Commun (Camb) 2020; 56:7167-7170. [DOI: 10.1039/d0cc02544e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A heterogeneous pore decoration strategy on a hydrophobic microporous polymer resulted in its hydrophobic–hydrophilic hybrid properties and high-coverage capture ability of microbial metabolites.
Collapse
Affiliation(s)
- Shuqin Liu
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangdong Academy of Sciences
- Guangzhou 510070
| | - Shuting Fang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangdong Academy of Sciences
- Guangzhou 510070
| | - Yiquan Huang
- KLGHEI of Environment and Energy Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Zhangmin Xiang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals
- Guangdong Institute of Analysis (China National Analytical Center Guangzhou)
- Guangdong Academy of Sciences
- Guangzhou 510070
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
22
|
Affiliation(s)
- Frederik A. Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
23
|
|