1
|
Hu SS, Wang TY, Ni L, Hu FX, Yue BW, Zheng Y, Wang TL, Kumar A, Wang YY, Wang JE, Zhou ZY. Icariin Ameliorates D-galactose-induced Cell Injury in Neuron-like PC12 Cells by Inhibiting MPTP Opening. Curr Med Sci 2024; 44:748-758. [PMID: 38900385 DOI: 10.1007/s11596-024-2892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/08/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Icariin (ICA) has a good neuroprotective effect and can upregulate neuronal basal autophagy in naturally aging rats. Mitochondrial dysfunction is associated with brain aging-related neurodegenerative diseases. Abnormal opening of the mitochondrial permeability transition pore (mPTP) is a crucial factor in mitochondrial dysfunction and is associated with excessive autophagy. This study aimed to explore that ICA protects against neuronal injury by blocking the mPTP opening and down-regulating autophagy levels in a D-galactose (D-gal)-induced cell injury model. METHODS A cell model of neuronal injury was established in rat pheochromocytoma cells (PC12 cells) treated with 200 mmol/L D-gal for 48 h. In this cell model, PC12 cells were pre-treated with different concentrations of ICA for 24 h. MTT was used to detect cell viability. Senescence associated β-galactosidase (SA-β-Gal) staining was used to observe cell senescence. Western blot analysis was performed to detect the expression levels of a senescence-related protein (p21), autophagy markers (LC3B, p62, Atg7, Atg5 and Beclin 1), mitochondrial fission and fusion-related proteins (Drp1, Mfn2 and Opa1), and mitophagy markers (Pink1 and Parkin). The changes of autophagic flow were detected by using mRFP-GFP-LC3 adenovirus. The intracellular ultrastructure was observed by transmission electron microscopy. Immunofluorescence was used to detect mPTP, mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (mtROS) and ROS levels. ROS and apoptosis levels were detected by flow cytometry. RESULTS D-gal treatment significantly decreased the viability of PC12 cells, and markedly increased the SA-β-Gal positive cells as compared to the control group. With the D-gal stimulation, the expression of p21 was significantly up-regulated. Furthermore, D-gal stimulation resulted in an elevated LC3B II/I ratio and decreased p62 expression. Meanwhile, autophagosomes and autolysosomes were significantly increased, indicating abnormal activation of autophagy levels. In addition, in this D-gal-induced model of cell injury, the mPTP was abnormally open, the ROS generation was continuously increased, the MMP was gradually decreased, and the apoptosis was increased. ICA effectively improved mitochondrial dysfunction to protect against D-gal-induced cell injury and apoptosis. It strongly inhibited excessive autophagy by blocking the opening of the mPTP. Cotreatment with ICA and an mPTP inhibitor (cyclosporin A) did not ameliorate mitochondrial dysfunction. However, the protective effects were attenuated by cotreatment with ICA and an mPTP activator (lonidamine). CONCLUSION ICA inhibits the activation of excessive autophagy and thus improves mitochondrial dysfunction by blocking the mPTP opening.
Collapse
Affiliation(s)
- Shan-Shan Hu
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Tong-Yao Wang
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Lu Ni
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Fan-Xin Hu
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Bo-Wen Yue
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Ying Zheng
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Tian-Lun Wang
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Abhishek Kumar
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yan-Yan Wang
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Jin-E Wang
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Zhi-Yong Zhou
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
2
|
Zhao H, Zhang Y, Hou L, Lu H, Zhang Y, Xing M. Effects of environmentally relevant cypermethrin and sulfamethoxazole on intestinal health, microbiome, and liver metabolism in grass carp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106760. [PMID: 37977013 DOI: 10.1016/j.aquatox.2023.106760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
The incorrect use of antibiotics and pesticides poses significant risks of biological toxicity. Their simultaneous exposure could jeopardize fish health and hinder sustainable aquaculture. Here, we subjected grass carp to waterborne cypermethrin (0.65 μg/L) or/and sulfamethoxazole (0.30 μg/L) treatments for a duration of 6 weeks. We closely monitored the effects on intestinal function, the intestinal microbiome, and the liver metabolome. The results revealed that exposure to waterborne cypermethrin or/and sulfamethoxazole compromised intestinal barrier function and decreased the expression of intestinal tight junction proteins. Additionally, heightened levels of pro-inflammatory cytokines in the intestines and reduced antioxidant levels indicated systemic inflammation and oxidative stress, with more severe effects observed in the combined exposure group. 16S rRNA sequencing of intestinal tissues suggested Firmicutes play a key role in the intestinal microbiota. GC/MS metabolomics of the liver showed more differential metabolites (56) in the co-exposure group compared to cypermethrin (45) or sulfamethoxazole (32) alone, indicating greater toxicological effects with combined exposure. Our analyses also suggest that ATP-binding cassette transporters could serve as a novel endpoint for assessing the risk of pesticide and antibiotic mixtures in grass carp. In summary, this study underscores the potential ecological risks posed by antibiotics and pesticides to aquatic environments and products. It emphasizes the importance of the gut-liver axis as a comprehensive pathway for assessing the toxicity in fish exposed to environmental contaminants.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yingxue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| |
Collapse
|
3
|
Zhu S, Shi J, Jin Q, Zhang Y, Zhang R, Chen X, Wang C, Shi T, Li L. Mitochondrial dysfunction following repeated administration of alprazolam causes attenuation of hippocampus-dependent memory consolidation in mice. Aging (Albany NY) 2023; 15:10428-10452. [PMID: 37801512 PMCID: PMC10599724 DOI: 10.18632/aging.205087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
The frequently repeated administration of alprazolam (Alp), a highly effective benzodiazepine sedative-hypnotic agent, in anxiety, insomnia, and other diseases is closely related to many negative adverse reactions that are mainly manifested as memory impairment. However, the exact molecular mechanisms underlying these events are poorly understood. Therefore, we conducted a proteomic analysis on the hippocampus in mice that received repeated administration of Alp for 24 days. A total of 439 significantly differentially expressed proteins (DEPs) were identified in mice with repeated administration of Alp compared to the control group, and the GO and KEGG analysis revealed the enrichment of terms related to mitochondrial function, cycle, mitophagy and cognition. In vitro experiments have shown that Alp may affect the cell cycle, reduce the mitochondrial membrane potential (MMP) to induce apoptosis in HT22 cells, and affect the progress of mitochondrial energy metabolism and morphology in the hippocampal neurons. Furthermore, in vivo behavioral experiments including IntelliCage System (ICS) and nover object recognition (NOR), hippocampal neuronal pathological changes with HE staining, and the expression levels of brain-deprived neuron factor (BDNF) with immunohistochemistry showed a significant decrease in memory consolidation in mice with repeated administration of Alp, which could be rescued by the co-administration of the mitochondrial protector NSI-189. To the best of our knowledge, this is the first study to identify a link between repeated administration of Alp and mitochondrial dysfunction and that mitochondrial impairment directly causes the attenuation of memory consolidation in mice.
Collapse
Affiliation(s)
- Siqing Zhu
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Jingjing Shi
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Qian Jin
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Changping, Beijing 102205, China
| |
Collapse
|
4
|
Verma J, Rai AK, Satija NK. Autophagy perturbation upon acute pyrethroid treatment impacts adipogenic commitment of mesenchymal stem cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105566. [PMID: 37666621 DOI: 10.1016/j.pestbp.2023.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 09/06/2023]
Abstract
Environmental chemical exposure can cause dysregulation in adipogenesis that can result in metabolic syndrome, which includes insulin resistance, type 2 diabetes, cardiovascular disease, as well as excessive body weight. The role of autophagy in adipocyte differentiation is debatable since both positive and negative effects have been reported. Type-I and type-II synthetic pyrethroids α-cypermethrin (CPM) and permethrin (PER), respectively, are reported to increase adipogenesis in vitro and in vivo. However, it is not known how these pyrethroids affect mesenchymal stem cells (MSCs). Thus, this study focused on evaluating the effect of pyrethroids (CPM and PER) pre-treatment (24 h) on MSC commitment and the regulatory role of autophagy in adipogenic lineage commitment. The formation of adipocytes was observed through nile red staining, perilipin expression by immunoflourescence, and adipogenic markers PPARγ, C/EBPα, and FABP4 by western blotting. It was found that the adipogenic differentiation ability of MSCs was significantly increased upon CPM or PER pre-treatment at 100 μM concentration as evident by lipid accumulation and enhanced expression of adipogenic markers. To assess the involvement of autophagy, the expression of p62 and LC3II were evaluated following pre-treatment. Immunoblotting results revealed an increased expression of p62 and LC3II in CPM or PER pretreated MSCs suggesting CPM and PER mediated inhibition of autophagy at 24 h. Further, an increase was observed in adipogenesis upon CPM or PER pre-treatment in combination with chloroquine, while use of rapamycin during pre-treatment abrogated the effect of CPM and PER. Thus, this study concludes that CPM or PER pre-treatment increases the adipogenic differentiation of MSCs. Since chloroquine also demonstrated similar adipogenic response, it further highlights that 24 h pre-treatment with autophagy modulators to inhibit basal autophagy primes MSCs towards adipogenic lineage.
Collapse
Affiliation(s)
- Julee Verma
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajit Kumar Rai
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar Satija
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Wei Z, Wang W, Fu W, Zhang P, Feng H, Xu W, Tao L, Li Z, Zhang Y, Shao X. The potential immunotoxicity of emamectin benzoate on the human THP-1 macrophages. ENVIRONMENTAL TOXICOLOGY 2023; 38:500-510. [PMID: 36269090 DOI: 10.1002/tox.23681] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Emamectin benzoate (EMB) as one of the typical biological pesticides has a wide range of applications in agriculture. However, the immune toxic effects of EMB in human received limited attention. In our study, THP-1 macrophage as an in vitro model was used to evaluate immune functions exposed to EMB. We observed that EMB inhibited phagocytic activity and respiratory burst capacity of macrophages without inducing cellular toxicity, implying the potential immunosuppression. Besides, EMB disturbed the cytokines balance embodied in the increase of TNF-α, IL-1β, IL-6, CCL27, CXCL8 mRNA expression and the decrease of IL-4, IL-13, IL-10 mRNA expression. EMB could exhibit pro-inflammatory responses in macrophages and promote the conversion of macrophages to M1 phenotype. Moreover, NF-κB pathway involved in regulating immune function from KEGG pathway analysis. EMB exposure could activate the NF-κB pathway in THP-1 macrophages by exploring the critical proteins. This research provided insights on immunotoxicity evaluation and clarified EMB-induced immunotoxicity was related to NF-κB pathway activation.
Collapse
Affiliation(s)
- Ziyi Wei
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ping Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hao Feng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Mitochondrial dysfunction promotes the necroptosis of Purkinje cells in the cerebellum of acrylamide-exposed rats. Food Chem Toxicol 2022; 171:113522. [PMID: 36417989 DOI: 10.1016/j.fct.2022.113522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Acrylamide (ACR) is a common neurotoxicant that can induce central-peripheral neuropathy in human beings. ACR from occupational setting and foods poses a potential threat to people's health. Purkinje cells are the only efferent source of cerebellum, and their output is responsible for coordinating motor activity. Recent studies have reported that Purkinje cell injury is one of the earliest neurotoxicity at any dose rate of ACR. However, the mechanism underlying ACR-mediated damage to Purkinje cells remains unclear. This research aimed to investigate whether necroptosis is involved in ACR-induced Purkinje cell death and its regulatory mechanism. In this study, rats were treated with ACR (40 mg/kg/every other day) for 6 weeks to establish an animal model of ACR neuropathy. Furthermore, an intervention experiment was achieved by rapamycin (RAPA), which is commonly used to activate mitophagy and maintain mitochondrial homeostasis. The results demonstrated ACR exposure caused necroptosis of Purkinje cells, mitochondrial dysfunction, and inflammatory response. By contrast, RAPA alleviated mitochondrial dysfunction and inhibited activation of necroptosis signaling pathway following ACR. In conclusion, our findings suggest that mitochondrial dysfunction and activation of necroptotic signaling are associated with the loss of Purkinje cells in ACR poisoning, which can be a potential therapeutic target for ACR neurotoxicity.
Collapse
|
7
|
Maheshwari N, Khan AA, Ali A, Mahmood R. Oral administration of pentachlorophenol impairs antioxidant system, inhibits enzymes of brush border membrane, causes DNA damage and histological changes in rat intestine. Toxicol Res (Camb) 2022; 11:616-627. [PMID: 36051662 PMCID: PMC9424705 DOI: 10.1093/toxres/tfac035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 10/28/2023] Open
Abstract
Pentachlorophenol (PCP) is a broad spectrum biocide that has many domestic and industrial applications. PCP enters the environment due to its wide use, especially as a wood preservative. Human exposure to PCP is through contaminated water and adulterated food products. PCP is highly toxic and is classified as class 2B or probable human carcinogen. In this study, we explored the effect of PCP on rat intestine. Adult rats were orally given different doses of PCP (25-150-mg/kg body weight/day) in corn oil for 5 days, whereas controls were given similar amount of corn oil. The rats were sacrificed 24 h after the last treatment. A marked increase in lipid peroxidation, carbonyl content, and hydrogen peroxide level was seen. The glutathione and sulfhydryl group content was decreased in all PCP treated groups. This strongly suggests the generation of reactive oxygen species (ROS) in the intestine. PCP administration suppressed carbohydrate metabolism, inhibited enzymes of brush border membrane (BBM), and antioxidant defense system. It also led to increase in DNA damage, which was evident from comet assay, DNA-protein cross-linking, and DNA fragmentation. Histological studies supported the biochemical results showing marked dose-dependent tissue damage in intestines from PCP treated animals. This study reports for the first time that oral administration of PCP induces ROS, impairs the antioxidant system, damages DNA, and alters the enzyme activities of BBM and metabolic pathways in rat intestine.
Collapse
Affiliation(s)
- Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Aijaz Ahmed Khan
- Departments of Anatomy, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Asif Ali
- Departments of Biochemistry, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| |
Collapse
|
8
|
Zhao T, Hu K, Li J, Zhu Y, Liu A, Yao K, Liu S. Current insights into the microbial degradation for pyrethroids: strain safety, biochemical pathway, and genetic engineering. CHEMOSPHERE 2021; 279:130542. [PMID: 33866100 DOI: 10.1016/j.chemosphere.2021.130542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/09/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
As a biologically inspired insecticide, pyrethroids (PYRs) exert evident toxic side effects on non-target organisms. PYRs and their general toxic intermediate 3-phenoxybenzoic acid (3-PBA) have shown high detection rates/levels in human beings recently, for which diet was identified as the major exposure route. Microbial mineralization has emerged as a versatile strategy in addressing such escalating concern. Herein, PYRs and 3-PBA biodegradation with regards to strain safety, application and surfactant were summarized. Numerous PYRs-degrading microbes have been reported yet with a minority focused on 3-PBA. Most isolates were from contaminated sites while several microbial food cultures (MFCs) have been investigated. MFCs such as Bacillus spp. and Aspergillus spp. that dominate in PYRs-degrading microbial pools are applicable candidates for agricultural by-products detoxification during the postharvest process. Subsequently, we discussed committed degradation steps, wherein hydrolase responsible for PYRs ester linkage cleavage and oxygenase for 3-PBA diphenyl ether bond rupture play vital roles. Finally, comprehensive information of the key enzyme genes is outlined along with methodologies concerning gene cloning. Cytochrome P450 monooxygenases (CYP) is competent for diphenyl ether scission. Newly-developed omics has become a feasible gene and enzyme mining technology. To achieve PYRs mineralization in feed and food commodities, the screening of MFCs rich in related enzymes and the construction of MFCs-derived genetically modified microbes (GMMs) exhibit great potential considering the safety issues.
Collapse
Affiliation(s)
- Tianye Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yuanting Zhu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Kai Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
9
|
Yuan J, Zheng Y, Gu Z. Effects of cypermethrin on the hepatic transcriptome and proteome of the red claw crayfish Cherax quadricarinatus. CHEMOSPHERE 2021; 263:128060. [PMID: 33297066 DOI: 10.1016/j.chemosphere.2020.128060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 06/12/2023]
Abstract
Cypermethrin (CYP) is a synthetic pyrethroid broadly used for pest control, however, it is extremely toxic to aquatic organisms. To assess the toxicity of CYP in red claw crayfish Cherax quadricarinatus, transcriptional and proteomic approaches combining two-dimensional polyacrylamide gel electrophoresis and tandem mass spectrometry were used to compare the hepatic expression profiles. A total of 41,349 unigenes and 8839 differentially expressed genes (DEGs) were obtained, which were enriched in the process. The category of 779 (0.625 ng L-1 CYP vs Con), 1963 (1.25 vs Con), and 2066 (1.25 vs 0.625) DEGs were screened. All findings suggested that CYP can induce antioxidant and biotransformation modulation variations in C. quadricarinatus to resist immunotoxicity and oxidative damages. The category of 196 (0.625 ng L-1 CYP vs Con) specific proteins were differentially expressed: 24 proteins were upregulated, and 20 proteins were downregulated relative to CYP. Protein identification indicated the KEGG pathways of the human immunodeficiency virus 1 infection, insulin signaling pathway, and influenza A enriched. From the differential expression of the selected nine proteins, the increased Loc113824800, Rps19, Atp2, Rps10, Hsp40, Brafldraft_124327, and the decreased Loc117331934, Loc113213835, and Loc106806551 revealed. While for the verification of the eight genes in transcriptome and the above nine genes in proteomic, specifically, gpx5, ggt, loc106458463, chelonianin decreased in the 0.625 ng L-1 CYP group. The transcripts of loc113816050, akr1d1 and gst, chelonianin and loc108675455 decreased and increased in the 1.25 ng L-1 CYP group, respectively. The present study reflects the overall change in cellular structure and metabolism related to the resistance of pyrethroid insecticides.
Collapse
Affiliation(s)
- Julin Yuan
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture/Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China
| | - Zhimin Gu
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China.
| |
Collapse
|
10
|
Lee GH, Choi KC. Adverse effects of pesticides on the functions of immune system. Comp Biochem Physiol C Toxicol Pharmacol 2020; 235:108789. [PMID: 32376494 DOI: 10.1016/j.cbpc.2020.108789] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/20/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Pesticides are chemical substances used to kill unwanted fungi, weeds and insects. In many countries, there is currently concern regarding the adverse effects of pesticides on health. It has been reported that pesticides may cause cancer, respiratory diseases, organ diseases, system failures, nervous system disorders and asthma, which are closely connected with immune disorders. Therefore, this study reviewed the immunotoxicity of pesticides that are currently used or prohibited from being used, especially their effects on leukocytes such as T cells, B cells, NK cells and macrophages. These immune cells play crucial roles in innate and adaptive immune systems to protect hosts. Pesticides are known to have possible toxicological modes of action to induce oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in living organisms. According to previous studies, pesticides such as atrazine (ATR), organophophorus (OP) compounds, carbamates, and pyrethroids were shown to inhibit the survival and growth of leukocytes by inducing apoptosis or cell cycle arrest and interfering with the specific immunological functions of each type of immune cells. These results suggest the immunotoxicity of pesticides toward specific immune cells. To substantiate the overall immunocompromised effects of pesticides, there is a need to collect and thoroughly analyze additional information regarding other immunological toxicities.
Collapse
Affiliation(s)
- Gun-Hwi Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
11
|
Zhang D, He Y, Ye X, Cai Y, Xu J, Zhang L, Li M, Liu H, Wang S, Xia Z. Activation of autophagy inhibits nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome activation and attenuates myocardial ischemia-reperfusion injury in diabetic rats. J Diabetes Investig 2020; 11:1126-1136. [PMID: 32064785 PMCID: PMC7477534 DOI: 10.1111/jdi.13235] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/16/2020] [Accepted: 02/13/2020] [Indexed: 12/29/2022] Open
Abstract
AIMS/INTRODUCTION Diabetic hearts are more vulnerable to ischemia-reperfusion injury (I/RI). The activation of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome can mediate the inflammatory process, and hence might contribute to myocardial I/RI. Activation of autophagy can eliminate excess reactive oxygen species and alleviate myocardial I/RI in diabetes. The present study aimed to investigate whether the activation of autophagy can alleviate diabetic myocardial I/RI through inhibition of NLRP3 inflammasome activation. MATERIALS AND METHODS A dose of 65 mg/kg streptozotocin was given by tail vein injection to establish a type 1 diabetes model in the rats. The left anterior descending coronary artery was ligated for 30 min followed by reperfusion for 2 h to establish a myocardial I/RI model. H9C2 cardiomyocytes were exposed to high glucose (33 mmol/L) and subjected to hypoxia-reoxygenation (6 h hypoxia followed by 4 h reoxygenation). RESULTS The diabetic rats showed significant inhibition of cardiac autophagy (decreased LC3-II/I and increased p62) that was concomitant with increased activation of NLRP3 inflammasome (increased NLRP3, apoptosis-related spots protein cleaved caspase-1, interleukin-18, interleukin-1β) and more severe myocardial I/RI (elevated creatine kinase myocardial band, lactate dehydrogenase and larger infarct size). However, administration of rapamycin, an inhibitor of the autophagy, to activate autophagy resulted in the inhibition of NLRP3 inflammasome, and finally alleviated myocardial I/RI. In vitro, high glucose inhibited autophagy, while activating NLRP3 inflammasome in H9C2 cardiomyocytes and aggravating hypoxia-reoxygenation injury, but rapamycin reversed these adverse effects of high glucose. CONCLUSION Activation of autophagy can suppress the formation of NLRP3 inflammasome, which in turn attenuates myocardial ischemia-reperfusion injury in diabetic rats.
Collapse
Affiliation(s)
- Dengwen Zhang
- Department of AnesthesiologyGuangdong Cardiovascular Institute & Guangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- Department of AnesthesiologyThe University of Hong KongHong KongChina
| | - Yi He
- Department of AnesthesiologyGuangdong Cardiovascular Institute & Guangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xiaodong Ye
- Department of AnesthesiologyThe University of Hong KongHong KongChina
| | - Yin Cai
- Department of AnesthesiologyThe University of Hong KongHong KongChina
| | - Jindong Xu
- Department of AnesthesiologyGuangdong Cardiovascular Institute & Guangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Liangqing Zhang
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Mingyi Li
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Hao Liu
- Department of AnesthesiologyGuangzhou Medical University Second Affiliated HospitalGuangzhouChina
| | - Sheng Wang
- Department of AnesthesiologyGuangdong Cardiovascular Institute & Guangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- Department of AnesthesiologyLinzhi People’s HospitalLinzhi, TibetChina
| | - Zhengyuan Xia
- Department of AnesthesiologyThe University of Hong KongHong KongChina
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
12
|
Maheshwari N, Mahmood R. 3,4-Dihydroxybenzaldehyde attenuates pentachlorophenol-induced cytotoxicity, DNA damage and collapse of mitochondrial membrane potential in isolated human blood cells. Drug Chem Toxicol 2020; 45:1225-1242. [DOI: 10.1080/01480545.2020.1811722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
13
|
He B, Wang X, Jin X, Xue Z, Zhu J, Wang C, Jin Y, Fu Z. β -Cypermethrin promotes the adipogenesis of 3T3-L1 cells via inducing autophagy and shaping an adipogenesis-friendly microenvironment. Acta Biochim Biophys Sin (Shanghai) 2020; 52:821-831. [PMID: 32637997 DOI: 10.1093/abbs/gmaa049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/05/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
The toxicity of synthetic pyrethroids has garnered attention, and studies have revealed that pyrethroids promote fat accumulation and lead to obesity in mice. Nevertheless, the effect of β-cypermethrin (β-CYP) on adipogenesis and its underlying mechanism remains largely unknown. In this study, mouse embryo fibroblasts 3T3-L1 cells were exposed to β-CYP, and the cell viability, intracellular reactive oxygen species (ROS) level, autophagy, and adipogenesis were assessed to investigate the roles of oxidative stress and autophagy in the toxic effects of β-CYP on adipogenesis. The results demonstrated that treatment with 100 μΜ β-CYP elevated the ROS level, decreased mitochondrion membrane potential, stimulated autophagy, and enhanced the adipogenesis induced by the mixture of insulin, dexamethasone, and 3-isobutyl-1-methylxanthine. However, co-treatment with N-acetyl-L-cysteine partially blocked the abovementioned effects of β-CYP in 3T3-L1 cells. In addition, co-treatment with rapamycin, an autophagy agonist, enhanced the inductive effect of β-CYP on adipogenesis, whereas co-treatment with 3-methyladenine blocked the enhancement of adipogenesis caused by β-CYP. Moreover, β-CYP also altered the microenvironment of 3T3-L1 cells to an adipogenesis-friendly one by reducing the extracellular expression of miR-34a, suggesting that the culture media of β-CYP-treated 3T3-L1 cells could shift macrophages to M2 type. Taken together, the data obtained in the present study demonstrated that β-CYP promoted adipogenesis via oxidative stress-mediated autophagy disturbance, and it caused macrophage M2 polarization via the alteration of miR-34a level in the microenvironment. The study demonstrated the adipogenesis-promoting effect of β-CYP and unveiled the potential mechanism.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xini Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zimeng Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
14
|
Li Y, Luo Y, Li B, Niu L, Liu J, Duan X. miRNA-182/Deptor/mTOR axis regulates autophagy to reduce intestinal ischaemia/reperfusion injury. J Cell Mol Med 2020; 24:7873-7883. [PMID: 32510855 PMCID: PMC7348187 DOI: 10.1111/jcmm.15420] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
It had been reported miR‐182 was down‐regulated after intestinal ischaemia/reperfusion (I/R) damage. However, its role and potential mechanisms are still unknown. This study was aimed to elucidate the function of miR‐182 in intestinal I/R injury and the underlying mechanisms. The model of intestinal injury was constructed in wild‐type and Deptor knockout (KO) mice. Haematoxylin‐eosin staining, Chiu's score and diamine oxidase were utilized to detect intestinal damage. RT‐qPCR assay was used to detected miR‐182 expression. Electronic microscopy was used to detect autophagosome. Western blot was applied to detect the expression of Deptor, S6/pS6, LC3‐II/LC3‐I and p62. Dual‐luciferase reporter assay was used to verify the relationship between miR‐182 and Deptor. The results showed miR‐182 was down‐regulated following intestinal I/R. Up‐regulation of miR‐182 reduced intestinal damage, autophagy, Deptor expression and enhanced mTOR activity following intestinal I/R. Moreover, suppression of autophagy reduced intestinal damage and inhibition of mTOR by rapamycin aggravated intestinal damage following intestinal I/R. Besides, damage of intestine was reduced and mTOR activity was enhanced in Deptor KO mice. In addition, Deptor was the target gene of miR‐182 and was indispensable for the protection of miR‐182 on intestine under I/R condition. Together, our research implicated up‐regulation of miR‐182 inhibited autophagy to alleviate intestinal I/R injury via mTOR by targeting Deptor.
Collapse
Affiliation(s)
- Yunsheng Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanhua Luo
- Department of Anesthesiology, Zhongshan Ophthalmic Center of Sun Yat-sen University, Guangzhou, China
| | - Baochuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lijun Niu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Duan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Chen KY, Cheng CJ, Cheng CC, Jhan KY, Chen YJ, Wang LC. The excretory/secretory products of fifth-stage larval Angiostrongylus cantonensis induces autophagy via the Sonic hedgehog pathway in mouse brain astrocytes. PLoS Negl Trop Dis 2020; 14:e0008290. [PMID: 32479527 PMCID: PMC7289448 DOI: 10.1371/journal.pntd.0008290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/11/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022] Open
Abstract
Angiostrongyliasis is induced by the nematode Angiostrongylus cantonensis and leads to eosinophilic meningitis and meningoencephalitis in humans. Excretory-secretory products (ESPs) are important investigation targets for studying the relationship between hosts and nematodes. These products assist worms in penetrating the blood-brain barrier and avoiding the host immune response. Autophagy is a catabolic process that is responsible for digesting cytoplasmic organelles, proteins, and lipids and removing them through lysosomes. This process is essential to cell survival and homeostasis during nutritional deficiency, cell injury and stress. In this study, we investigated autophagy induction upon treatment with the ESPs of the fifth-stage larvae (L5) of A. cantonensis and observed the relationship between autophagy and the Shh pathway. First, the results showed that A. cantonensis infection induced blood-brain barrier dysfunction and pathological changes in the brain. Moreover, A. cantonensis L5 ESPs stimulated autophagosome formation and the expression of autophagy molecules, such as LC3B, Beclin, and p62. The data showed that upon ESPs treatment, rapamycin elevated cell viability through the activation of the autophagy mechanism in astrocytes. Finally, we found that ESPs induced the activation of the Sonic hedgehog (Shh) signaling pathway and that the expression of autophagy molecules was increased through the Shh signaling pathway. Collectively, these results suggest that A. cantonensis L5 ESPs stimulate autophagy through the Shh signaling pathway and that autophagy has a protective effect in astrocytes. In helminthes, Excretory-secretory products (ESPs) contains a wide range of molecules, including proteins, lipids, glycans, and nucleic acids, that assist in the penetration of host defensive barriers, reduction of oxidative stress, and avoid the host immune attack. It has been known as a key factor for parasite development, including feeding, invasion and molting. Therefore, ESPs is a valuable target for the investigation of the host-parasite relationships. However, only a few researches about the function of Angiostrongyliasis cantonensis ESPs have been verified to date. Angiostrongyliasis cantonensis, a blood-feeding nematode, and it is an important causative agent of eosinophilic meningitis and meningoencephalitis in human. Recent our studies have demonstrated that the A. cantonensis ESPs can induce oxidative stress, apoptosis, and immune response. In this study, we will use a mouse astrocytes as a model to investigate the signaling mechanisms of autophagy induction by ESPs treatment. First, the Microarray, Western blotting, and Transmission electron microscopy data demonstrated that A. cantonensis ESPs can induce autophagy generation in astrocytes. Next, ESPs-induced autophagy was activated via Sonic hedgehog (Shh) signaling, and it has a protective potential for astrocytes. These finding will provide new insights into the mechanisms and effects of the A. cantonensis ESPs.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chieh Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Yuan Jhan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ju Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
16
|
He B, Wang X, Jin X, Xue Z, Ni Y, Zhu J, Wang C, Jin Y, Fu Z. β‐Cypermethrin
Alleviated the Inhibitory Effect of Medium from
RAW
264.7 Cells on
3T3‐L1
Cell Maturation into Adipocytes. Lipids 2020; 55:251-260. [DOI: 10.1002/lipd.12234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/29/2020] [Accepted: 03/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Bingnan He
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Xia Wang
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Xini Jin
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Zimeng Xue
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Yinhua Ni
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Jianbo Zhu
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Caiyun Wang
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Yuanxiang Jin
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| | - Zhengwei Fu
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou Zhejiang 310032 China
| |
Collapse
|
17
|
Wang XH, Souders CL, Xavier P, Li XY, Yan B, Martyniuk CJ. The pyrethroid esfenvalerate induces hypoactivity and decreases dopamine transporter expression in embryonic/larval zebrafish (Danio rerio). CHEMOSPHERE 2020; 243:125416. [PMID: 31995874 DOI: 10.1016/j.chemosphere.2019.125416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Esfenvalerate is a pyrethroid insecticide used widely for agricultural and residential applications. This insecticide has been detected in aquatic environments at concentrations that can induce sub-lethal effects in organisms. In this study, zebrafish embryos were used to examine the effects of environmentally-relevant concentrations of esfenvalerate on development and behavior. It was hypothesized that esfenvalerate exposure would impair locomotion due to its effects on the central nervous system. We also measured mitochondrial bioenergetics and the expression of genes (dopamine system) as putative mechanisms of locomotor impairment. Concentrations of 0.02, 0.2 and 2 μg/L esfenvalerate did not induce significant mortality nor deformity in zebrafish, but there was an acceleration in hatching time for zebrafish exposed to 2 μg/L esfenvalerate. As an indicator of neurotoxicity, the Visual Motor Response (VMR) test was conducted with 5, 6, and 7 dpf zebrafish after continuous exposure, and higher concentrations were used (4 and 8 μg/L esfenvalerate) to better discern age-and dose dependent responses in behavior. Experiments revealed that, unlike the other stages, 6 dpf larvae showed evidence for hypo-activity with esfenvalerate, suggesting that different stages of larval development may show increased sensitivity to pyrethroid exposure. This may be related to age-dependent maturation of the central nervous system. We hypothesized that reduced larval activity may be associated with impaired production of ATP and the function of mitochondria at earlier life stages, however dramatic alterations in oxidative phosphorylation were not observed. Based on evidence that dopamine regulates behavior and studies showing that other pyrethroids affect dopamine system, we measured transcripts involved in dopaminergic signaling. We found that dopamine active transporter was down-regulated with 0.2 μg/L esfenvalerate. Lastly, we comprehensively summarize the current literature (>20 studies) regarding the toxicity of pyrethroids in zebrafish, which is a valuable resource to those studying these pesticides. This study demonstrates that esfenvalerate at environmentally-relevant levels induces hypoactivity that are dependent upon the age of the zebrafish, and these behavioral changes are hypothesized to be related to impaired dopamine signaling.
Collapse
Affiliation(s)
- Xiao H Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Priscilla Xavier
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Xiao Y Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
18
|
He B, Wang X, Yang C, Zhu J, Jin Y, Fu Z. The regulation of autophagy in the pesticide-induced toxicity: Angel or demon? CHEMOSPHERE 2020; 242:125138. [PMID: 31670000 DOI: 10.1016/j.chemosphere.2019.125138] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/20/2023]
Abstract
Pesticides have become an essential tool for pest kill, weed control and microbiome inhibition for both agricultural and domestic use. However, with the massive use, pesticides can exist in soil, air and water, and sometimes even accumulate in the human or other mammals through food chains. Lots of researches have proven that pesticides possess toxicity to mammals on endocrine, neural and immune systems. Autophagy, as a conservative intracellular process, which is activated by stress-related signals, plays a pivotal role, either "angle" or "demon", in regulation of cell fate and function. Recent evidences in researches elucidated a strong link between the autophagy and the toxicity of pesticides. In this review, we summarized the previous researches which focus on the autophagy regulation in the pesticides-induced toxicity, and hope that this work can help us to discover a potential strategy for the treatment of the disease caused by pesticides.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
19
|
Bhatt P, Huang Y, Zhan H, Chen S. Insight Into Microbial Applications for the Biodegradation of Pyrethroid Insecticides. Front Microbiol 2019; 10:1778. [PMID: 31428072 PMCID: PMC6687851 DOI: 10.3389/fmicb.2019.01778] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Pyrethroids are broad-spectrum insecticides and presence of chiral carbon differentiates among various forms of pyrethroids. Microbial approaches have emerged as a popular solution to counter pyrethroid toxicity to marine life and mammals. Bacterial and fungal strains can effectively degrade pyrethroids into non-toxic compounds. Different strains of bacteria and fungi such as Bacillus spp., Raoultella ornithinolytica, Psudomonas flourescens, Brevibacterium sp., Acinetobactor sp., Aspergillus sp., Candida sp., Trichoderma sp., and Candia spp., are used for the biodegradation of pyrethroids. Hydrolysis of ester bond by enzyme esterase/carboxyl esterase is the initial step in pyrethroid biodegradation. Esterase is found in bacteria, fungi, insect and mammalian liver microsome cells that indicates its hydrolysis ability in living cells. Biodegradation pattern and detected metabolites reveal microbial consumption of pyrethroids as carbon and nitrogen source. In this review, we aim to explore pyrethroid degrading strains, enzymes and metabolites produced by microbial strains. This review paper covers in-depth knowledge of pyrethroids and recommends possible solutions to minimize their environmental toxicity.
Collapse
Affiliation(s)
| | | | | | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|