1
|
King L, Xia L, Chen J, Li W, Wang Q, Huang Y, Wang P, Liang X, Li Y, Chen L, Shan Z, Peng X, Liu L. Exposure to perchlorate and cardiovascular disease in China: A community-based cross-sectional study and benchmark dose estimation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125429. [PMID: 39617200 DOI: 10.1016/j.envpol.2024.125429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024]
Abstract
The association between exposure to perchlorate, which inhibits thyroidal iodine uptake, and cardiovascular disease (CVD) is unclear in China. Moreover, the point of departure (POD) for perchlorate based on observed adverse health effect in Chinese populations remains absent. A total of 2355 adults (mean age 50.4 years and 39.2% male) from four communities in Shenzhen were included in analyses. Spot urine specimens were collected to measure urinary perchlorate concentrations, which were applied to estimate daily intakes of perchlorate. Multivariable logistic regression model was applied to examine the association between perchlorate and CVD. The roles of cardiometabolic risk factors, including obesity, abdominal obesity, hypertension, diabetes, and hyperlipidemia, were evaluated with mediation analyses. We further employed Bayesian benchmark dose (BMD) modeling to derive the POD for risk assessment. Comparing extreme tertiles, subjects in the highest perchlorate tertile had a significantly elevated risk of prevalent CVD (OR: 2.16; 95% CI: 1.28, 3.65). Multivariable-adjusted ORs for hypertension, diabetes, and hyperlipidemia associated with per doubling in urinary perchlorate concentration were 1.11 (95% CI: 1.01, 1.21), 1.15 (95% CI: 1.02, 1.28), and 1.11 (95% CI: 1.01, 1.20), respectively. Hypertension, diabetes, and hyperlipidemia partially mediated the perchlorate-CVD association (mediated proportion ranged from 7.75% to 11.30%). Given a benchmark response of 5% and 10%, the model-averaged BMD lower bounds (BMDLs) of perchlorate exposure on CVD were 0.15 and 0.40 μg/kg-bw day, respectively. Our estimated POD for perchlorate was lower than those recommended by other groups. These findings call for stricter regulations on perchlorate contamination to promote cardiovascular health in China.
Collapse
Affiliation(s)
- Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Xia
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyi Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Liang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilei Shan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Jordan-Ward R, von Hippel FA, Wilson CA, Rodriguez Maldonado Z, Dillon D, Contreras E, Gardell A, Minicozzi MR, Titus T, Ungwiluk B, Miller P, Carpenter D, Postlethwait JH, Byrne S, Buck CL. Differential gene expression and developmental pathologies associated with persistent organic pollutants in sentinel fish in Troutman Lake, Sivuqaq, Alaska. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122765. [PMID: 37913975 DOI: 10.1016/j.envpol.2023.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Persistent organic pollutants (POPs) are lipophilic compounds that bioaccumulate in animals and biomagnify within food webs. Many POPs are endocrine disrupting compounds that impact vertebrate development. POPs accumulate in the Arctic via global distillation and thereby impact high trophic level vertebrates as well as people who live a subsistence lifestyle. The Arctic also contains thousands of point sources of pollution, such as formerly used defense (FUD) sites. Sivuqaq (St. Lawrence Island), Alaska was used by the U.S. military during the Cold War and FUD sites on the island remain point sources of POP contamination. We examined the effects of POP exposure on ninespine stickleback (Pungitius pungitius) collected from Troutman Lake in the village of Gambell as a model for human exposure and disease. During the Cold War, Troutman Lake was used as a dump site by the U.S. military. We found that PCB concentrations in stickleback exceeded the U.S. Environmental Protection Agency's guideline for unlimited consumption despite these fish being low trophic level organisms. We examined effects at three levels of biological organization: gene expression, endocrinology, and histomorphology. We found that ninespine stickleback from Troutman Lake exhibited suppressed gonadal development compared to threespine stickleback (Gasterosteus aculeatus) studied elsewhere. Troutman Lake stickleback also displayed two distinct hepatic phenotypes, one with lipid accumulation and one with glycogen-type vacuolation. We compared the transcriptomic profiles of these liver phenotypes using RNA sequencing and found significant upregulation of genes involved in ribosomal and metabolic pathways in the lipid accumulation group. Additionally, stickleback displaying liver lipid accumulation had significantly fewer thyroid follicles than the vacuolated phenotype. Our study and previous work highlight health concerns for people and wildlife due to pollution hotspots in the Arctic, and the need for health-protective remediation.
Collapse
Affiliation(s)
- Renee Jordan-Ward
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Frank A von Hippel
- Department of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., P.O. Box 245210, Tucson, AZ 85724, USA.
| | - Catherine A Wilson
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Zyled Rodriguez Maldonado
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Elise Contreras
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Alison Gardell
- School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce Street, Tacoma, WA 98402, USA
| | - Michael R Minicozzi
- Department of Biological Sciences, Minnesota State University Mankato, 242 Trafton Science Center South, Mankato, MN, 56001, USA
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Bobby Ungwiluk
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - Pamela Miller
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - David Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Place, Rensselaer, NY 12144, USA
| | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Samuel Byrne
- Middlebury College, Department of Biology and Global Health Program, 14 Old Chapel Rd, Middlebury, VT 05753, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| |
Collapse
|
3
|
Guo X, Wu B, Hu W, Wang X, Su W, Meng J, Lowe S, Zhao D, Huang C, Liang M, Qu G, Zhou X, Sun Y. Associations of perchlorate, nitrate, and thiocyanate with metabolic syndrome and its components among US adults: A cross-sectional study from NHANES. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163083. [PMID: 36972877 DOI: 10.1016/j.scitotenv.2023.163083] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/27/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Perchlorate, nitrate and thiocyanate are common endocrine disruptors. Herein, this study was undertaken to evaluate the associations between perchlorate, nitrate, and thiocyanate exposures (alone or in combination) and risk of metabolic syndrome (MetS) among adults, which has not been explored so far. Analytical data were extracted from different datasets in the National Health and Nutrition Examination Survey (NHANES) database. Multivariate logistic regression models were constructed to investigate the associations between perchlorate, nitrate, and thiocyanate exposures, and the prevalence of MetS. Subsequently, odds ratios (OR) and their corresponding 95 % confidence intervals (CIs) were adopted to represent the magnitude of the effect size. We performed a series of subgroup analyses and sensitivity analyses as well. Moreover, three commonly used mixture modeling strategies [Weighted quantile sum (WQS) regression, quantile-based g-computation (Qgcomp), and Bayesian kernel machine regression (BKMR)] were utilized to evaluate the joint mixture effect on MetS. This study included 12,007 participants in the subsequent analyses. After adjustment for confounding factors, higher levels of perchlorate, and thiocyanate concentrations were significantly associated with the risk of MetS (OR = 1.15, 95%CI:1.00, 1.32; OR = 1.21, 95%CI:1.04, 1.41, respectively). Analyses of WQS and Qgcomp showed that a quartile increase in chemical mixture was correlated with the occurrence of MetS with ORs of 1.07 (95%CI: 0.99, 1.16) and 1.07 (95%CI: 1.00, 1.14), respectively. This positive association was mainly driven by perchlorate and thiocyanate. Analysis of BKMR revealed that perchlorate, nitrate, and thiocyanate mixture was positively associated with the risk of MetS while perchlorate, and thiocyanate were major predictors in the mixture. In summary, our study reveals positive relationships between perchlorate, thiocyanate and MetS. Co-exposure to perchlorate, nitrate and thiocyanate is positively associated with the risk of MetS, with perchlorate and thiocyanate contributing the most to the overall mixture effect.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Birong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Wenjing Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xingyue Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Wenqi Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Jia Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA
| | - Dongdong Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Christy Huang
- Touro University Nevada College of Osteopathic Medicine, 874 American Pacific Dr, Henderson, NV 89014, USA
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China.
| | - Xiaoqin Zhou
- Chaohu Hospital, Anhui Medical University, No. 64 Chaohubei Road, Hefei 238000, Anhui, China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; Chaohu Hospital, Anhui Medical University, No. 64 Chaohubei Road, Hefei 238000, Anhui, China.
| |
Collapse
|
4
|
Li W, Xiao H, Wu H, Pan C, Deng K, Xu X, Zhang Y. Analysis of environmental chemical mixtures and nonalcoholic fatty liver disease: NHANES 1999-2014. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119915. [PMID: 35970346 DOI: 10.1016/j.envpol.2022.119915] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/09/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
We aimed to investigate the associations between chemical mixtures and the risk of nonalcoholic fatty liver disease (NAFLD) in this study. A total of 127 exposure analytes within 13 chemical mixture groups were included in the current analysis. Associations between chemical mixture exposure and prevalence of NAFLD were examined using weighted quantile sum (WQS) regressions. NAFLD was diagnosed by hepatic steatosis index (HSI) and US fatty liver index (USFLI). In USFLI-NAFLD cohort, chemical mixtures positively associated with NAFLD development included urinary metals (OR: 1.10, 95% CI: 1.04-1.16), urinary perchlorate, nitrate and thiocyanate (OR: 1.06, 95% CI: 1.02-1.11), urinary pesticides (OR: 1.24, 95% CI: 1.09-1.40), urinary phthalates (OR: 1.18, 95% CI: 1.09-1.28), urinary polyaromatic hydrocarbons (PAHs) (OR: 1.08, 95% CI: 1.03-1.14), and urinary pyrethroids, herbicides, and organophosphate pesticides metabolites (OR: 1.32, 95% CI: 1.15-1.51). All of the above mixtures were also statistically significant in WQS regressions in the HSI-NAFLD cohort. Besides, some chemical mixtures were only significant in HSI-NAFLD cohort including urinary arsenics (OR: 1.07, 95% CI: 1.02-1.12), urinary phenols (OR: 1.10, 95% CI: 1.02-1.19) and blood polychlorinated dibenzo-p-dioxins (OR: 1.10, 95% CI: 1.03-1.17). Three types of chemical mixtures only showed significant associations in the healthy lifestyle score (HLS) of 3-4 subgroup, including urinary perchlorate, nitrate and thiocyanate, urinary PAHs and blood polychlorinated dibenzo-p-dioxins. In conclusion, the exposure of specific types of chemical mixtures were associated with elevated NAFLD risk, and the effects of some chemical mixtures on NAFLD development exhibited differences in participants with different lifestyles.
Collapse
Affiliation(s)
- Wei Li
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haitao Xiao
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Wu
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Cheng Pan
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Deng
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuewen Xu
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yange Zhang
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Reh B, Wang X, Feng Y, Bhandari RK. Potassium perchlorate effects on primordial germ cells of developing medaka larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106283. [PMID: 36063761 DOI: 10.1016/j.aquatox.2022.106283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Perchlorate is a chemical compound commonly used in military artillery and equipment. It has been detected in drinking water, air, soil, and breast milk. Exposure of humans to perchlorate can occur in the theater of war and areas adjacent to military training grounds. A high concentration of perchlorate has been found to affect reproduction in vertebrates, including fish. However, whether environmental concentrations of perchlorate can affect primordial germ cells (PGCs), the founders of sperm and eggs, is not clearly understood. In the present study, we examined the effects of 0, 10, 100, and 1000 μg/L potassium perchlorate exposure on the embryonic development of medaka and their PGCs. Perchlorate exposure delayed hatching time, reduced heartbeat, inhibited migration of PGCs, and increased developmental deformities in the larvae. The 10 and 20 mg/L concentrations of perchlorate were lethal to embryos, whereas vitamin C co-treatment (1 mg/L) completely blocked perchlorate-induced mortality. RNA-seq analysis of isolated PGCs showed a non-linear pattern in expression profiles of differentially altered genes. Significantly upregulated genes were found in PGCs from the 10 and 1000 μg/L groups, whereas the 100 μg/L groups showed the highest number of significantly downregulated genes. Gene ontology analysis predicted differentially expressed genes to be involved in proteolysis, metabolic processes, peptides activity, hydrolase activity, and hormone activity. Among the cellular components, extracellular, intracellular, sarcoplasmic, and 6-phosphofructokinase and membrane-bounded processes were affected. Ingenuity Pathway Analysis of PGC transcriptomes revealed thyroid hormone signaling to be affected by all concentrations of perchlorate. The present results suggested that perchlorate affected the development of medaka larvae and vitamin C was able to ameliorate perchlorate-induced embryo mortality. Additionally, perchlorate altered the global transcriptional network in PGCs in a non-linear fashion suggesting its potential effects on developing germ cells and fertility.
Collapse
Affiliation(s)
- Beh Reh
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA; Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Yashi Feng
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
6
|
Petersen AM, Small CM, Yan Y, Wilson C, Batzel P, Bremiller RA, Buck CL, von Hippel FA, Cresko WA, Postlethwait JH. Evolution and developmental expression of the sodium-iodide symporter ( NIS, slc5a5) gene family: Implications for perchlorate toxicology. Evol Appl 2022; 15:1079-1098. [PMID: 35899258 PMCID: PMC9309457 DOI: 10.1111/eva.13424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022] Open
Abstract
The vertebrate sodium-iodide symporter (NIS or SLC5A5) transports iodide into the thyroid follicular cells that synthesize thyroid hormone. The SLC5A protein family includes transporters of vitamins, minerals, and nutrients. Disruption of SLC5A5 function by perchlorate, a pervasive environmental contaminant, leads to human pathologies, especially hypothyroidism. Perchlorate also disrupts the sexual development of model animals, including threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio), but the mechanism of action is unknown. To test the hypothesis that SLC5A5 paralogs are expressed in tissues necessary for the development of reproductive organs, and therefore are plausible candidates to mediate the effects of perchlorate on sexual development, we first investigated the evolutionary history of Slc5a paralogs to better understand potential functional trajectories of the gene family. We identified two clades of slc5a paralogs with respect to an outgroup of sodium/choline cotransporters (slc5a7); these clades are the NIS clade of sodium/iodide and lactate cotransporters (slc5a5, slc5a6, slc5a8, slc5a8, and slc5a12) and the SGLT clade of sodium/glucose cotransporters (slc5a1, slc5a2, slc5a3, slc5a4, slc5a10, and slc5a11). We also characterized expression patterns of slc5a genes during development. Stickleback embryos and early larvae expressed NIS clade genes in connective tissue, cartilage, teeth, and thyroid. Stickleback males and females expressed slc5a5 and its paralogs in gonads. Single-cell transcriptomics (scRNA-seq) on zebrafish sex-genotyped gonads revealed that NIS clade-expressing cells included germ cells (slc5a5, slc5a6a, and slc5a6b) and gonadal soma cells (slc5a8l). These results are consistent with the hypothesis that perchlorate exerts its effects on sexual development by interacting with slc5a5 or its paralogs in reproductive tissues. These findings show novel expression domains of slc5 genes in stickleback and zebrafish, which suggest similar functions across vertebrates including humans, and provide candidates to mediate the effects of perchlorate on sexual development.
Collapse
Affiliation(s)
- Ann M. Petersen
- Department of Biology, Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
- J.J. Howard Marine Lab, Northeast Fisheries Science CenterNational Oceanographic and Atmospheric AdministrationSandy HookNew JerseyUSA
| | - Clayton M. Small
- Department of Biology, Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Yi‐Lin Yan
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| | - Catherine Wilson
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| | - Peter Batzel
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| | - Ruth A. Bremiller
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| | - C. Loren Buck
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Frank A. von Hippel
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonArizonaUSA
| | - William A. Cresko
- Department of Biology, Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - John H. Postlethwait
- Department of Biology, Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| |
Collapse
|
7
|
Wang L, Fu Z, Zheng J, Wang S, Ping Y, Gao B, Mo X, Liang P, Huang J. Exposure to perchlorate, nitrate and thiocyanate was associated with the prevalence of cardiovascular diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113161. [PMID: 34999343 DOI: 10.1016/j.ecoenv.2022.113161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
AIMS To determine the association between urinary levels of perchlorate, nitrate and thiocyanate, and the prevalence of cardiovascular diseases (CVD) among general population. METHODS A total of 16, 570 participants were enrolled from the National Health and Nutrition Examination Surveys (NHANES). Urinary levels of perchlorate, nitrate and thiocyanate were measured using ion chromatography coupled with electrospray tandem mass spectrometry. Multivariable linear regressions and logistic regressions were performed to explore the associations of exposure to perchlorate, nitrate and thiocyanate, and the prevalence of total and specific CVD, including chronic heart failure (CHF), coronary heart disease (CHD), angina, heart failure and stroke. Restricted cubic splines were used to explore the nonlinearity. RESULTS Participants with CVD had a lower urinary level of nitrate and thiocyanate (all P < 0.001). A null association between urinary perchlorate and total CVD or specific CVD was observed. Comparing with the lowest quartile, the highest quartile of urinary nitrate was independently associated with a decreased presence of total CVD (odds ratio [OR] 0.66, 95% confidence interval [CI] [0.53, 0.82]), CHF (OR 0.48, 95% CI [0.33, 0.71]), and stroke (OR 0.63, 95%CI [0.45, 0.88]). In addition, per one-fold increasement of urinary nitrate decreased a 0.15-fold prevalence of total CVD, 0.29-fold prevalence of CHF, and 0.16-fold prevalence of stroke. However, for urinary thiocyanate, we found that the 2nd and 3rd quartile were associated with total CVD, the 2nd quartile associated with heart attack, and the 2nd, 3rd and 4th quartile associated with stroke. What's more, restricted cubic splines confirmed that the relation between urinary nitrate and CVD was linear (P for nonlinearity = 0.242) and the inverse relation between urinary thiocyanate and CVD was nonlinear (P for nonlinearity < 0.001). CONCLUSION In the general population, low levels of nitrate were linearly while thiocyanate were nonlinearly associated with an increased presence of cardiovascular diseases.
Collapse
Affiliation(s)
- Long Wang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Fu
- Department of Cardio-macrovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jie Zheng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuai Wang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Ping
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beibei Gao
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China.
| | - Ping Liang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.
| | - Jinyu Huang
- Department of Cardiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Center for Translational Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Trotter Ii R, Baldwin J, Buck CL, Remiker M, Aguirre A, Milner T, Torres E, von Hippel FA. Health Impacts of Perchlorate and Pesticide Exposure: Protocol for Community-Engaged Research to Evaluate Environmental Toxicants in a US Border Community. JMIR Res Protoc 2021; 10:e15864. [PMID: 34383679 PMCID: PMC8387886 DOI: 10.2196/15864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 06/15/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The Northern Arizona University (NAU) Center for Health Equity Research (CHER) is conducting community-engaged health research involving "environmental scans" in Yuma County in collaboration with community health stakeholders, including the Yuma Regional Medical Center (YRMC), Regional Center for Border Health, Inc. (RCBH), Campesinos Sin Fronteras (CSF), Yuma County Public Health District, and government agencies and nongovernmental organizations (NGOs) working on border health issues. The purpose of these efforts is to address community-generated environmental health hazards identified through ongoing coalitions among NAU, and local health care and research institutions. OBJECTIVE We are undertaking joint community/university efforts to examine human exposures to perchlorate and agricultural pesticides. This project also includes the parallel development of a new animal model for investigating the mechanisms of toxicity following a "one health" approach. The ultimate goal of this community-engaged effort is to develop interventions to reduce exposures and health impacts of contaminants in Yuma populations. METHODS All participants completed the informed consent process, which included information on the purpose of the study, a request for access to health histories and medical records, and interviews. The interview included questions related to (1) demographics, (2) social determinants of health, (3) health screening, (4) occupational and environmental exposures to perchlorate and pesticides, and (5) access to health services. Each participant provided a hair sample for quantifying the metals used in pesticides, urine sample for perchlorate quantification, and blood sample for endocrine assays. Modeling will examine the relationships between the concentrations of contaminants and hormones, demographics and social determinants of health, and health status of the study population, including health markers known to be impacted by perchlorate and pesticides. RESULTS We recruited 323 adults residing in Yuma County during a 1-year pilot/feasibility study. Among these, 147 residents were patients from either YRMC or RCBH with a primary diagnosis of thyroid disease, including hyperthyroidism, hypothyroidism, thyroid cancer, or goiter. The remaining 176 participants were from the general population but with no history of thyroid disorder. The pilot study confirmed the feasibility of using the identified community-engaged protocol to recruit, consent, and collect data from a difficult-to-access, vulnerable population. The demographics of the pilot study population and positive feedback on the success of the community-engaged approach indicate that the project can be scaled up to a broader study with replicable population health findings. CONCLUSIONS Using a community-engaged approach, the research protocol provided substantial evidence regarding the effectiveness of designing and implementing culturally relevant recruitment and dissemination processes that combine laboratory findings and public health information. Future findings will elucidate the mechanisms of toxicity and the population health effects of the contaminants of concern, as well as provide a new animal model to develop precision medicine capabilities for the population. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/15864.
Collapse
Affiliation(s)
- Robert Trotter Ii
- Department of Anthropology, Northern Arizona University, Flagstaff, AZ, United States
| | - Julie Baldwin
- Center for Health Equity Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Charles Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| | - Mark Remiker
- Center for Health Equity Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Amanda Aguirre
- Regional Center for Border Health Inc., Yuma, AZ, United States
| | - Trudie Milner
- Yuma Regional Medical Center, Yuma, AZ, United States
| | - Emma Torres
- Campesinos Sin Fronteras, Somerton, AZ, United States
| | - Frank Arthur von Hippel
- Department of Community, Environment, and Policy, Mel & Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
9
|
Minicozzi MR, Axlid EG, von Hippel FA, Espinoza J, Funke A, Phillips QP, Buck CL. Perchlorate exposure does not induce obesity or non-alcoholic fatty liver disease in zebrafish. PLoS One 2021; 16:e0254500. [PMID: 34347796 PMCID: PMC8336815 DOI: 10.1371/journal.pone.0254500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Perchlorate is a water-soluble contaminant found throughout the United States and many other countries. Perchlorate competitively inhibits iodide uptake at the sodium/iodide symporter, reducing thyroid hormone synthesis, which can lead to hypothyroidism and metabolic syndromes. Chronic perchlorate exposure induces hepatic steatosis and non-alcoholic fatty liver disease (NAFLD) in developing threespine stickleback (Gasterosteus aculeatus). We hypothesized that perchlorate would also induce zebrafish (Danio rerio) to develop phenotypes consistent with NAFLD and to accumulate lipids throughout the body. We exposed zebrafish embryos to four concentrations of perchlorate treated water (10μg/L, 10mg/L, 30mg/L, and 100mg/L) and a control (0mg/L) over the course of 133 days. Adult zebrafish were euthanized, sectioned, H&E and Oil Red-O stained, and analyzed for liver morphology and whole body lipid accumulation. In a representative section of the liver, we counted the number of lipid droplets and measured the area of each droplet and the total lipid area. For whole body analysis, we calculated the ratio of lipid area to body area within a section. We found that zebrafish exposed to perchlorate did not differ in any measured liver variables or whole body lipid area when compared to controls. In comparison to stickleback, we see a trend that control stickleback accumulate more lipids in their liver than do control zebrafish. Differences between the species indicate that obesogenic effects due to perchlorate exposure are not uniform across fish species, and likely are mediated by evolutionary differences related to geographic location. For example, high latitude fishes such as stickleback evolved to deposit lipid stores for over-winter survival, which may lead to more pronounced obesogenic effects than seen in tropical fish such as zebrafish.
Collapse
Affiliation(s)
- Michael R. Minicozzi
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, United States of America
| | - Erik G. Axlid
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, United States of America
| | - Frank A. von Hippel
- Department of Community, Environment and Policy, The University of Arizona, Tucson, AZ, United States of America
| | - Joseph Espinoza
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Aubrey Funke
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Quentin P. Phillips
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, United States of America
| | - C. Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States of America
| |
Collapse
|
10
|
Zhou J, Du N, Li D, Qin J, Li H, Chen G. Combined effects of perchlorate and hexavalent chromium on the survival, growth and reproduction of Daphnia carinata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144676. [PMID: 33485194 DOI: 10.1016/j.scitotenv.2020.144676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/19/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Perchlorate and hexavalent chromium (Cr(VI)) are common cocontaminants in aquatic environments due to their high water solubility, stability, mobility, and some coapplications. However, few studies have investigated their combined toxicity to organisms. In this work, we studied the acute and chronic toxicities of perchlorate and Cr(VI), alone and in combination, with survival, growth, and reproduction as endpoints using Daphnia carinata as a model organism. For a single contaminant, Cr(VI) was found to be more toxic than perchlorate to D. carinata not only in terms of survival but also in terms of growth and reproduction. In regard to the combined pattern, the interactive effects on survival, growth, and reproduction were mainly additivity, antagonism, and synergism, respectively, suggesting that the interactive response of perchlorate and Cr(VI) is endpoint-specific. Due to significant synergism, over 21 days of observation, the inhibition of 0.1 mg/L perchlorate and 0.2 mg/L Cr(VI) on cumulative offspring per female in the first seven broods reached 63.9 ± 3.6%, suggesting that long-term exposure to perchlorate and Cr(VI) at environmentally relevant concentrations may affect D. carinata reproduction in the natural environment. Our results will be significant for understanding the complicated combined toxicity of perchlorate and Cr to aquatic organisms.
Collapse
Affiliation(s)
- Juanjuan Zhou
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ningning Du
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Dongqin Li
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Junhao Qin
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Huashou Li
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guikui Chen
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Endocrine disruptors in teleosts: Evaluating environmental risks and biomarkers. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Tian Y, Xu H, Liu S, Fang M, Wu Y, Gong Z. Study on the bioaccessibility and bioavailability of perchlorate in different food matrices in vitro. Food Chem 2020; 333:127470. [PMID: 32653684 DOI: 10.1016/j.foodchem.2020.127470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Perchlorate, a persistent pollutant, interferes with iodine uptake by the thyroid. Perchlorate exposure mainly occurs through ingested food; understanding the bioaccessibility and bioavailability of perchlorate in foods facilitate more accurate human health risk assessments. An in vitro digestion/Caco-2 cell model was used for this research. The bioaccessibility of perchlorate in the control group, lettuce, rice and formula was 93.45%, 70.14%, 70.25%, and 63.68%, respectively. The bioavailability of perchlorate was as follows: control group, 43.45%; rice, 37.17%; lettuce, 35.13%; and formula, 30.72%. The absorptive apparent permeability coefficient (Papp) of the control, lettuce, rice, and formula was 30-101 nm/s, 32-65 nm/s, 54-161 nm/s, and 41-88 nm/s, respectively. The results suggested that the risk from perchlorate was overestimated only when considering the content of perchlorate in foods and that the presence of food matrices reduced perchlorate bioavailability by differing degrees.
Collapse
Affiliation(s)
- Yimei Tian
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Hao Xu
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Shiqiao Liu
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Min Fang
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, People's Republic of China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Qin J, Ru S, Wang W, Hao L, Ru Y, Wang J, Zhang X. Long-term bisphenol S exposure aggravates non-alcoholic fatty liver by regulating lipid metabolism and inducing endoplasmic reticulum stress response with activation of unfolded protein response in male zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114535. [PMID: 32283406 DOI: 10.1016/j.envpol.2020.114535] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Environmental chemical exposures have been implicated as risk factors for the development of non-alcoholic fatty liver (NAFLD). Bisphenol S (BPS), widely used in multitudinous consumer products, could disrupt lipid metabolism in the liver. This study aimed at examining the hypothesis that long-term exposure to BPS promotes the development of liver fibrosis and inflammation by means of the application of a semi-static exposure experiment that exposed zebrafish to 1, 10, and 100 μg/L BPS from 3 h post fertilization to 120 day post fertilization. Results showed that the 120-d BPS exposure elevated plasma aspartate aminotransferase and alanine aminotransferase activities, increased triacylglycerol (TAG) and total cholesterol levels in male liver, and even induced hepatic apoptosis and fibrosis. Hepatic lipid accumulation observed in the 30-d BPS-exposed zebrafish was recovered after a 90-d depuration phase, thereby indicating that long-term BPS exposure promotes the progression of simple steatosis to non-alcoholic steatohepatitis. Furthermore, BPS exposure for 120-d promoted the synthesis of TAG and lipotoxic free fatty acids by elevating the transcription of srebp1, acc, fasn, and elovl6, induced endoplasmic reticulum (ER) stress with increasing expression levels of unfolded protein response (UPR) genes (perk, hsp5, atf4a, and ddit3), and then stimulated the expression of two key autophagy genes (atg3 and lc3) and inflammatory genes (il1b and tnfα). It is indicated that BPS can induce the development of steatohepatitis via the activation of the PERK-ATF4a pathway of the UPR. Data gathered suggest that environmental pollutants-induced ER stress with the activation of UPR can potentially trigger the NAFLD development in males. Overall, our study provided new sights into understanding of the adverse health effects of metabolism disrupting chemicals.
Collapse
Affiliation(s)
- Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yiran Ru
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, 92093, USA
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|