1
|
Maqbool T, Chen H, Wang Q, McKenna AM, Jiang D. Transformation of sedimentary dissolved organic matter in electrokinetic remediation catalogued by FT-ICR mass spectrometry. WATER RESEARCH 2024; 262:122094. [PMID: 39083902 DOI: 10.1016/j.watres.2024.122094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
In electrokinetic remediation (EKR), the sedimentary dissolved organic matter (DOM) could impede remediation by scavenging reactive species and generating unintended byproducts. Yet its transformation and mechanisms remained largely unknown. This study conducted molecular-level characterization of the water-extractable DOM (WEOM) in EKR using negative-ion electrospray ionization coupled to 21 tesla Fourier transform ion cyclotron resonance mass spectrometry (21 T FT-ICR MS). The results suggested that ∼55 % of the ∼7,000 WEOM compounds identified were reactive, and EKR lowered their diversity, molecular weight distribution, and double-bond equivalent (DBE) through a combination of electrochemical and microbial redox reactions. Heteroatom-containing WEOM (CHON and CHOS) were abundant (∼ 35% of the total WEOM), with CHOS generally being more reactive than CHON. Low electric potential (1 V/cm) promoted the growth of dealkylation and desulfurization bacteria, and led to anodic CO2 mineralization, anodic cleavage of -SO and -SO3, and cathodic cleavage of -SH2; high electric potential (2 V/cm) only enriched desulfurization bacteria, and differently, led to anodic oxygenation and cathodic hydrogenation of unsaturated and phenolic compounds, in addition to cathodic cleavage of -SH2. The long-term impact of these changes on soil quality and nitrogen-sulfur-carbon flux may be need to studied to identify unknown risks and new applications of EKR.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Huan Chen
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, FL, 32310-4005, USA
| | - Qingshi Wang
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Amy M McKenna
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, FL, 32310-4005, USA; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daqian Jiang
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
2
|
Ganbat N, Altaee A, Hamdi FM, Zhou J, Chowdhury MH, Zaidi SJ, Samal AK, Almalki R, Tapas MJ. PFOA remediation from kaolinite soil by electrokinetic process coupled with activated carbon/iron coated activated carbon - permeable reactive barrier. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104425. [PMID: 39244813 DOI: 10.1016/j.jconhyd.2024.104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
This study applied electrokinetic (EK) in situ soil remediation for perfluorooctanoic acid (PFOA) removal from kaolinite soil. The kaolinite soil was spiked with 10 mg/kg PFOA for the EK treatment using Sodium Cholate bio-surfactant coupled with Activated Carbon (AC) or iron-coated Activated Carbon (FeAC) permeable reactive barrier (PRB). The study also evaluated the impact of AC and FeAC PRBs' position on the EK process performance. In the EK with the PRB in the middle section, PFOA removal from kaolinite was 52.35 % in the AC-EK tests and 59.55 % in the FeAC-EK. Experimental results showed the accumulation of PFOA near the cathode region in FeAC PRB tests, hypothesising that Fe from the PRB formed a complex with PFOA ions and transported it to the cathode region. Spent PRBs were regenerated with methanol for PFOA extraction and reuse in the EK experiments. Although FeAC PRB achieved better PFOA removal than AC PRB, the EK tests with regenerated AC-EK and FeAC-EK PRBs achieved 40.37 % and 20.62 % PFOA removal. For EK with FeAC PRB near the anode, PFOA removal was 21.96 %. Overall, using PRB in conjunction with the EK process can further enhance the removal efficiency. This concept could be applied to enhance the removal of various PFAS compounds from contaminated soils by combining a suitable PRB with the EK process. It also emphasizes the feasibility of in-situ soil remediation technologies for forever chemical treatment.
Collapse
Affiliation(s)
- Namuun Ganbat
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia; Photon Remediation, 219-241 Cleveland, St Redfern, NSW 2016, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Faris M Hamdi
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Mahedy Hasan Chowdhury
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Syed Javaid Zaidi
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain University, Bangalore, 562112, India
| | - Raed Almalki
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Marie Joshua Tapas
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| |
Collapse
|
3
|
Ambaye TG, Hassani A, Vaccari M, Franzetti A, Prasad S, Formicola F, Rosatelli A, Rehman MZU, Mohanakrishna G, Ganachari SV, Aminabhavi TM, Rtimi S. Emerging technologies for the removal of pesticides from contaminated soils and their reuse in agriculture. CHEMOSPHERE 2024; 362:142433. [PMID: 38815812 DOI: 10.1016/j.chemosphere.2024.142433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Pesticides are becoming more prevalent in agriculture to protect crops and increase crop yields. However, nearly all pesticides used for this purpose reach non-target crops and remain as residues for extended periods. Contamination of soil by widespread pesticide use, as well as its toxicity to humans and other living organisms, is a global concern. This has prompted us to find solutions and develop alternative remediation technologies for sustainable management. This article reviews recent technological developments for remediating pesticides from contaminated soil, focusing on the following major points: (1) The application of various pesticide types and their properties, the sources of pesticides related to soil pollution, their transport and distribution, their fate, the impact on soil and human health, and the extrinsic and intrinsic factors that affect the remediation process are the main points of focus. (2) Sustainable pesticide degradation mechanisms and various emerging nano- and bioelectrochemical soil remediation technologies. (3) The feasible and long-term sustainable research and development approaches that are required for on-site pesticide removal from soils, as well as prospects for applying them directly in agricultural fields. In this critical analysis, we found that bioremediation technology has the potential for up to 90% pesticide removal from the soil. The complete removal of pesticides through a single biological treatment approach is still a challenging task; however, the combination of electrochemical oxidation and bioelectrochemical system approaches can achieve the complete removal of pesticides from soil. Further research is required to remove pesticides directly from soils in agricultural fields on a large-scale.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, Brescia, 25123, Italy; Department of Environment and Resource Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey; Research Center for Science, Technology and Engineering (BILTEM), Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, Brescia, 25123, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences-DISAT, University of Milano-Bicocca, Piazza Della Scienza 1 Milano, 20126, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, 110012, India
| | - Francesca Formicola
- Department of Earth and Environmental Sciences-DISAT, University of Milano-Bicocca, Piazza Della Scienza 1 Milano, 20126, Italy
| | - Asia Rosatelli
- Department of Earth and Environmental Sciences-DISAT, University of Milano-Bicocca, Piazza Della Scienza 1 Milano, 20126, Italy
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan
| | - Gunda Mohanakrishna
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Sharanabasava V Ganachari
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; Korea University, Seoul, South Korea.
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1210 Geneva, Switzerland.
| |
Collapse
|
4
|
Medina-Díaz HL, López-Bellido FJ, Alonso-Azcárate J, Fernández-Morales FJ, Rodríguez L. A new hyperaccumulator plant (Spergularia rubra) for the decontamination of mine tailings through electrokinetic-assisted phytoextraction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169543. [PMID: 38145688 DOI: 10.1016/j.scitotenv.2023.169543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The screening of new effective metal hyperaccumulators is essential for the development of profitable phytoremediation projects in highly degraded environments such as mining areas. The goal of this research was to analyze the phytoextraction potential of the native plant Spergularia rubra to decontaminate and eventually recover metals (phytomining) from the mine tailings (belonging to an abandoned Pb/Zn Spanish mine) in which it grows spontaneously. To do so, the ability of this plant species to accumulate metals was evaluated both under natural conditions and through simple and electrokinetically assisted phytoextraction tests using alternating current and different combinations of voltage gradient (1/2 V cm-1) and application time (6/12 h per day). The complete duration of the greenhouse trial was 64 days, although alternating current was applied only during the last 14 days. The results obtained demonstrated the exceptional effectiveness of S. rubra for metal hyperaccumulation and growth without affecting toxicity in highly contaminated mining waste. Zn was the metal accumulated to a higher extent in the shoots, reaching concentrations up to 17,800 mg kg-1; Pb was mainly accumulated in the roots reaching a maximum concentration of 8709 mg kg-1. Cu and Cd were accumulated to a lesser extent but the bioconcentration factors were much >1. It has been proved that S. rubra is a hyperaccumulator species for Zn and Cd both in natural and greenhouse conditions and, very probably, Pb in wild conditions. The application of AC current did not significantly increase metal concentrations in plant tissues but it was able to increase the aerial biomass of S. rubra by 49.8 %. As a result, the phytoextraction yields of all metals were significantly improved as compared to wild conditions (up to 86 % for Zn). It could open new expectations about the economic viability of recovering high-value metals from mine tailings.
Collapse
Affiliation(s)
- Hassay Lizeth Medina-Díaz
- Institute of Environmental and Chemical Technology (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela, s/n, 13071 Ciudad Real, Spain
| | - Francisco Javier López-Bellido
- School of Agricultural Engineering, University of Castilla-La Mancha, Ronda de Calatrava, s./n, 13003 Ciudad Real, Spain
| | - Jacinto Alonso-Azcárate
- Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III, s/n, 45071 Toledo, Spain
| | - Francisco Jesús Fernández-Morales
- Institute of Environmental and Chemical Technology (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela, s/n, 13071 Ciudad Real, Spain
| | - Luis Rodríguez
- Institute of Environmental and Chemical Technology (ITQUIMA), University of Castilla-La Mancha, Avenida Camilo José Cela, s/n, 13071 Ciudad Real, Spain.
| |
Collapse
|
5
|
Ganbat N, Hamdi FM, Ibrar I, Altaee A, Alsaka L, Samal AK, Zhou J, Hawari AH. Iron slag permeable reactive barrier for PFOA removal by the electrokinetic process. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132360. [PMID: 37657326 DOI: 10.1016/j.jhazmat.2023.132360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The efficacy of the Standalone Electrokinetic (EK) process in soil PFAS removal is negligible, primarily due to the intersecting mechanisms of electromigration and electroosmosis transportation. Consequently, the redistribution of PFAS across the soil matrix occurs, hampering effective remediation efforts. Permeable reactive barrier (PRB) has been used to capture contaminants and extract them at the end of the EK process. This study conducted laboratory-scale tests to evaluate the feasibility of the iron slag PRB enhanced-EK process in conjunction with Sodium Cholate (NaC) biosurfactant as a cost-effective and sustainable method for removing PFOA from the soil. A 2 cm iron slag-based PRB with a pH of 9.5, obtained from the steel-making industry, was strategically embedded in the middle of the EK reactors to capture PFOA within the soil. The main component of the slag, iron oxide, exhibited significant adsorption capacity for PFOA contamination. The laboratory-scale tests were conducted over two weeks, revealing a PFOA removal rate of more than 79% in the slag/activated carbon PRB-EK test with NaC enhancement and 70% PFOA removal in the slag/activated carbon PRB-EK without NaC. By extending the duration of the slag/AC PRB-EK test with NaC enhancement to three weeks, the PFOA removal rate increased to 94.09%, with the slag/AC PRB capturing over 87% of the initial PFOA concentration of 10 mg/L. The specific energy required for soil decontamination by the EK process was determined to be 0.15 kWh/kg. The outcomes of this study confirm the feasibility of utilizing iron slag waste in the EK process to capture PFOA contaminants, offering a sustainable approach to soil decontamination. Combining iron slag PRB and NaC biosurfactant provides a cost-effective and environmentally friendly method for efficient PFOA removal from soil.
Collapse
Affiliation(s)
- Namuun Ganbat
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Faris M Hamdi
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Australia.
| | - Lilyan Alsaka
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain University, Ramanagara, Bangalore 562 112, Karnataka, India
| | - John Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Alaa H Hawari
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar
| |
Collapse
|
6
|
Maqbool T, Jiang D. Electrokinetic remediation leads to translocation of dissolved organic matter/nutrients and oxidation of aromatics and polysaccharides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162703. [PMID: 36906032 DOI: 10.1016/j.scitotenv.2023.162703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Dissolved organic matter (DOM) in the sediment matrix affects contaminant remediation through consumption of oxidants and binding with contaminants. Yet the change in DOM during remediation processes, particularly during electrokinetic remediation (EKR), remains under-investigated. In this work, we elucidated the fate of sediment DOM in EKR using multiple spectroscopic tools under abiotic and biotic conditions. We found that EKR led to significant electromigration of the alkaline-extractable DOM (AEOM) toward the anode, followed by transformation of the aromatics and mineralization of the polysaccharides. The AEOM remaining in the cathode (largely polysaccharides) was resistant to reductive transformation. Limited difference was noted between abiotic and biotic conditions, indicating the dominance of electrochemical processes when relatively high voltages were applied (1-2 V/cm). The water-extractable organic matter (WEOM), in contrast, showed an increase at both electrodes, which was likely attributable to pH-driven dissociations of humic substances and amino acid-type constituents at the cathode and the anode, respectively. Nitrogen migrated with the AEOM toward the anode, but phosphorus remained immobilized. Understanding the redistribution and transformation of DOM could inform studies on contaminant degradation, carbon and nutrient availability, and sediment structural changes in EKR.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Daqian Jiang
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
7
|
Abou-Shady A, Ali ME, Ismail S, Abd-Elmottaleb O, Kotp YH, Osman MA, Hegab RH, Habib AA, Saudi AM, Eissa D, Yaseen R, Ibrahim GA, Yossif TM, El-Araby H, Selim EMM, Tag-Elden MA, Elwa AES, El-Harairy A. Comprehensive review of progress made in soil electrokinetic research during 1993–2020, Part I: process design modifications with brief summaries of main output. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
8
|
He Z, Dong L, Zhang K, Zhang D, Pan X. Lactic acid bacteria induce phosphate recrystallization for the in situ remediation of uranium-contaminated topsoil: Principle and application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120277. [PMID: 36167164 DOI: 10.1016/j.envpol.2022.120277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Uranium (U) contamination often occurs in the topsoil (arable layer), and is a serious threat to crop growth. However, conventional microbial reduction methods are sensitive to oxygen and cannot be used to treat aerobic topsoils. In this study, phosphate-solubilizing microorganisms (PSM) were isolated from U-contaminated topsoil and used for soil remediation. Microbial metabolites and products were analyzed, and the pathways and mechanisms of PSM immobilization were revealed. The results showed that strain PSM8 had the highest phosphate-solubilizing capacity (dissolved P was 208 ± 5 mg/L) and the highest U removal rate (97.3 ± 0.1%). Multi-technical analyses indicated that bacterial surface functional groups adsorbed (UO2)2+ ions on the cell surface, glycolysis produced 3-10 mg/L of lactic acid (pH 4.7-6.0), and lactic acid solubilized Ca3(PO4)2 to form stable chernikovite (a type of uranyl phosphate) on the cell surface. The coupled application of Ca3(PO4)2 and strain PSM8 significantly reduced the bioavailability of soil U (62 ± 11%), converting U from the exchangeable to the residual phase and P from the steady to the available form. In addition, pot experiments showed that soil remediation promoted crop growth and significantly reduced U uptake and toxicity to photosynthetic systems. These findings demonstrate that PSM and Ca3(PO4)2 are good coupled fertilizers for U-contaminated agricultural soil.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lingfeng Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Keqing Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
9
|
Yuan C, Dai YD, Chen YC. Analysis of electric field efficacy and remediation performance of triclosan contaminated soil by Co-Fe/al oxidation electrodes coupled with peroxymonosulfate (PMS) in an ECGO system with diversified electrode configurations. CHEMOSPHERE 2022; 307:135841. [PMID: 35970218 DOI: 10.1016/j.chemosphere.2022.135841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Triclosan (TCS) is commonly used as a biocide against bacterial and fungal infections. The overuse of TCS has resulted in its abundance in the natural environment. Sulfate radicals have been used for in-situ groundwater remediation because of their superior performance. In this study, Co-Fe/Al oxidation electrodes were prepared to investigate the effect of electrode configurations on TCS remediation using electrokinetic geooxidation (ECGO) technology coupled with peroxymonosulfate (PMS) in a soil system. The Co-Fe/Al electrodes catalyzed the activity of PMS by solid-phase Co2+ to produce sulfate radicals. Four electrode configurations, named G1-G4, applying a potential gradient of 2 V/cm, were conducted for ten days in all experiments. Results showed that 14.2-66.2% of TCS remediation efficiency was observed. TCS was mainly degraded by the Co-Fe/Al electrode and sulfate radicals rather than being removed by the electroosmotic flow. The degradation efficiencies of the G4 system (66.0%) and the G2 or G3 system (36.6% or 64.4%, respectively) were much higher than that of the G1 system. (13.5%). Three regions (effective, ineffective, and enhanced) were classified to explore the effect of the electric field on TCS remediation. The arrangement of the honeycomb cells was related to the area of enhanced region in the system, in which the superior remediation performance of the TCS was found. Therefore, TCS remediation performance is highly related to the electrode configuration and honeycomb arrangement in the system. The seven-unit honeycomb system (G4) demonstrated a linear and centralized arrangement, resulting in fast migration and excellent degradation of the TCS.
Collapse
Affiliation(s)
- Ching Yuan
- Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, Taiwan.
| | - Yung-Dun Dai
- Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, Taiwan.
| | - Yen-Chi Chen
- Division II, Foundation of Taiwan Industry Service (Former Graduate Student), 1 F, No. 14, Alley 39, Lane 198, Shi-Wei Rd. Ta-An Dist., Taipei, Taiwan.
| |
Collapse
|
10
|
Vidal J, Báez ME, Calzadilla W, Aranda M, Salazar R. Removal of chloridazon and its metabolites from soil and soil washing water by electrochemical processes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Fan R, Tian H, Wu Q, Yi Y, Yan X, Liu B. Mechanism of bio-electrokinetic remediation of pyrene contaminated soil: Effects of an electric field on the degradation pathway and microbial metabolic processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126959. [PMID: 34449353 DOI: 10.1016/j.jhazmat.2021.126959] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, the mechanism of bio-electrokinetic (BIO-EK) remediation to improve the degradation of pyrene was evaluated based on an analysis of the intermediate products and the microbial community. The results show that BIO-EK remediation has a higher pyrene degradation efficiency on pyrene and its intermediate products than the bioremediation and electrokinetic (EK) remediation processes. A series of intermediate products were detected. According to the type of the intermediate products, two degradation pathways, biological metabolism and electrochemical oxidation, are proposed in the BIO-EK remediation of pyrene. Furthermore, the primary microbial taxa involved in the pollutant degradation changed, which led to variations in the functional gene components. The abundant and functional genes related to metabolism were specifically analyzed. The results indicate that the electric field promotes the expression of metabolisms associated with 14 carbohydrates, 13 lipids, 13 amino acids, five energies, and in particular, 11 xenobiotics. These results suggest that in addition to the promotion effect on the microbial metabolism caused by the electric field, BIO-EK remediation can promote the degradation of pollutants due to the coexistence of a microbial metabolic pathway and an electrochemical oxidation pathway.
Collapse
Affiliation(s)
- Ruijuan Fan
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China.
| | - Haihua Tian
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Qiong Wu
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Yuanyuan Yi
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Xingfu Yan
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China
| | - Bingru Liu
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China
| |
Collapse
|
12
|
Rathankumar AK, Vaithyanathan VK, Saikia K, Anand SS, Vaidyanathan VK, Cabana H. Effect of alkaline treatment on the removal of contaminants of emerging concern from municipal biosolids: Modelling and optimization of process parameters using RSM and ANN coupled GA. CHEMOSPHERE 2022; 286:131847. [PMID: 34392201 DOI: 10.1016/j.chemosphere.2021.131847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The current study aimed in enhancing the efficiency of alkaline treatment for CECs remediation in biosolids through the application of RSM and ANN. Due to the seasonal variation of CECs in biosolids, a complete CECs profile over a period of three years were performed. Out of 64 targeted CECs, 13 PhACs (70.1 μg/kg) and 10 pesticides (57.2 μg/kg) were detected in biosolids. In order to enhance the remediation efficiency of CECs by alkaline treatment, process parameters - pH (9.0-13.0), time (3.0-12.0 h) and biosolids age (1-28 days) were optimized by statistical modelling. Using Box-Behnken design, experiments were designed and the resultant data was employed as input for model building using RSM and ANN. The developed mathematical model for alkaline treatment of biosolids using ANN predicted CECs removal with 3.2-fold lower MSE and exhibited high regression coefficient (R2 > 0.99) than the conventional RSM model. Further, the multiparameter model was optimized for achieving maximum of 95.7 % CECs removal using ANN-GA. On analyzing the acute toxicity of alkaline treated residual biosolids under the optimized conditions, a reduction in LC50 by an average of 2.1-fold than initial biosolids was observed. This study not only established the application of statistical modelling in the development of an efficient remediation strategy for biosolids, which can be further applied for large-scale remediation process, but also proved the reliability and efficiency of ANN-GA.
Collapse
Affiliation(s)
- Abiram Karanam Rathankumar
- Integrated Bioprocess Laboratory, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India; Laboratoire de Génie de l'environnement, Faculté de Génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Vasanth Kumar Vaithyanathan
- Laboratoire de Génie de l'environnement, Faculté de Génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Kongkona Saikia
- Integrated Bioprocess Laboratory, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India; Laboratoire de Génie de l'environnement, Faculté de Génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Srinidhi Sonai Anand
- Integrated Bioprocess Laboratory, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocess Laboratory, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India; Laboratoire de Génie de l'environnement, Faculté de Génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| | - Hubert Cabana
- Laboratoire de Génie de l'environnement, Faculté de Génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|
13
|
Guedes P, Martins C, Couto N, Silva J, Mateus EP, Ribeiro AB, Pereira CS. Irrigation of soil with reclaimed wastewater acts as a buffer of microbial taxonomic and functional biodiversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149671. [PMID: 34454147 DOI: 10.1016/j.scitotenv.2021.149671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The usage of reclaimed wastewater (RWW) for irrigation of agricultural soils is increasingly being acknowledged for reducing water consumption by promoting reuse of treated wastewater, and for the delivery of extant nutrients in the soil. The downside is that RWW may be a vector for contamination of soils with contaminants of emerging concern (CECs), if left uncontrolled. Its usage is anticipated to alter the soil properties, consequently also the soil microbial community. In the present study, soil microcosms were set to monitor how short periods (up to fourteen days) of RWW irrigation influence the soil ecosystem, namely its physicochemical properties, functioning, and colonising microbiota (differentiating fungi from bacteria). Two scenarios were studied: clean soil and soil contaminated (spiked) with 9 CECs, at conditions that limit any abiotic decay processes, monitoring along time fluctuations in the taxonomic and functional microbiota diversity. As shortly as fourteen days, the irrigation of either soil with RWW did not significantly (p > 0.05) alter its physicochemical properties and scarcely impacted the bioremediation processes of the CECs that showed decay levels ranging from 24% to 100%. Bacillus spp. dominance was enhanced along time in all the soil microcosms (reaching over 70% of the total abundance on the 7th day) but the RWW help to preserve, to some extent, high bacterial diversity. Besides, irrigation with RWW acted as a buffer of the soil mycobiota, limiting alterations in its composition caused either along time (to a minor degree) or due to contamination with CECs (to a great degree). This includes limiting the rise of Rhizopus sp. relative abundance. Collectively, our data support the utility of short-term periods of RWW irrigation for preserving the soil microbial diversity and functioning, especially when fungi are considered.
Collapse
Affiliation(s)
- Paula Guedes
- CENSE - Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Nazaré Couto
- CENSE - Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Joana Silva
- CENSE - Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Eduardo P Mateus
- CENSE - Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Alexandra B Ribeiro
- CENSE - Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
14
|
Zhang M, Wu B, Guo P, Wang S, Guo S. Bioremediation of polycyclic aromatic hydrocarbons contaminated soil under the superimposed electric field condition. CHEMOSPHERE 2021; 273:128723. [PMID: 33127102 DOI: 10.1016/j.chemosphere.2020.128723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/10/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
An innovative superimposed electric field (SEF) was designed with the aim to achieve uniform removal of polycyclic aromatic hydrocarbons (PAHs) in soil. Also the influence of SEF on the bioremediation efficiency of PAHs was investigated in compared with the common electric field (CEF). Five experiments were conducted in this study, namely EK-CEF (applied CEF), EKB-CEF (CEF enhanced bioremediation), EK-SEF (applied SEF), EKB-SEF (SEF enhanced bioremediation), and Bio (bioremediation). The results indicated that electric field with periodically reversed polarity could effectively prevent the occurrence of large changes in soil pH, temperature, and electric current. The electric field intensity of SEF was concentrated in the range of 0.5-1.5 V/cm, and the difference between the maximum and minimum PAHs removal percentage in EK-SEF was just 5.4%, in comparison to 14.8% in EK-CEF. The bioremediation promoting effect did not show significant difference between SEF and CEF. Compared to Bio, the removal percentages of the 5-ring and 6-ring PAHs attributed to the degrading bacteria were much higher in EKB-SEF and EKB-CEF. Moreover, the microbial number increased with the distance away from electrodes, and the microbial community changed correspondingly. All these would be resulted in differences removal efficiencies among different PAHs components. Despite its intrinsic advantages, the influence of SEF on soil physicochemical and biological properties needs further study.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | | | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China.
| |
Collapse
|
15
|
Vidal J, Báez ME, Salazar R. Electro-kinetic washing of a soil contaminated with quinclorac and subsequent electro-oxidation of wash water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143204. [PMID: 33162125 DOI: 10.1016/j.scitotenv.2020.143204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
This work deals with the remediation of a soil that has been enriched with Quinclorac (QNC), one of the herbicides most used in Chile for weed control in rice fields. Quinclorac damages the microflora and macrofauna of soils and is toxic to some susceptible crops, which results in economic loses during crop rotation. Furthermore, Quinclorac a potential contaminant of water resources and soils, given its high mobility and persistence. This has created the need to lower its concentrations in soils intensively cultivated. In this study, an electro-kinetic soil washing system (EKSW) for mobilizing this pesticide in the soil was explored. The performance of this technology was compared by assessing the effect of direct (DP) and reverse (RP) polarity during 15 days under potentiostatic conditions and applying an electric field of 1 V cm-1 between electrodes. Among the main results, the highest removal of QNC was obtained through the EKSW-RP process, which also contributed to the prevention of acidity and alkaline fronts in the soil, compared to the EKSW-DP system. In both cases, the highest accumulation of QNC occurred in the cathodic well by mobilizing the non-ionized contaminant through the electroosmotic flow (EOF) from anode to cathode. After the treatment with EKSW, the wash water accumulated in the anodic and cathodic wells, which contained an important concentration of pesticide, was subjected to electro-oxidation (EO) by applying different current densities (j). The high generation of •OH on the surface of a boron-doped diamond electrode (BDD) allowed for the complete degradation and mineralization of QNC and its major intermediate compounds to CO2. The results of this study show that the application of both coupled stages in this type of remediation technologies would enable the removal of QNC from the soil without altering its chemical and physical properties, constituting an environmentally friendly process.
Collapse
Affiliation(s)
- J Vidal
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile.
| | - María E Báez
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | - R Salazar
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| |
Collapse
|
16
|
Guedes P, Dionísio J, Couto N, Mateus EP, Pereira CS, Ribeiro AB. Electro-bioremediation of a mixture of structurally different contaminants of emerging concern: Uncovering electrokinetic contribution. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124304. [PMID: 33153782 DOI: 10.1016/j.jhazmat.2020.124304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/02/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
This study analyses the electrokinetic (EK) contribution to the removal from a clay soil of a mixture of 10 different contaminants of emerging concern (CECs; 17β-estradiol, E2; sulfamethoxazole, SMX; bisphenol A, BPA; ibuprofen, IBU; 17α-ethinylestradiol, EE2; oxybenzone, OXY; diclofenac, DCF; triclosan, TCS; caffeine, CAF; carbamazepine, CBZ). After 4 days, the CECs natural attenuation was between 0% (CBZ) and 90% (E2) yet increasing with the application of EK (20 mA, 12 h ON/OFF) to 14% (CBZ) and 100% (E2). When EK was applied, the CECs more recalcitrant to biodegradation (i.e. ≤ 13% biotic decay) mostly underwent electro-chemical induced degradation (OXY, DCF, TCS, CAF, CBZ). Daily irrigation enhanced the rates of the electro-oxidation -osmosis and -migration, increasing the CECs decay. After 8 days of EK treatment, the CECs decay increased, surpassing the decay lag phase of some compounds (OXY, TCS, and CBZ). Yet after 16 days, most CECs showed similar removals with and without EK, with EK only acting positively on SMX, OXY, TCS and CBZ (ca. +10%). Our results support that EK application can improve the removal of CECs from soil, however, under the conditions tested, 16-day treatment lead to pH alterations that decreased the bioremediation efficiency and inhibited electro-degradation near the cathode.
Collapse
Affiliation(s)
- Paula Guedes
- CENSE - Center for Environmental and Sustainability Research, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Joana Dionísio
- CENSE - Center for Environmental and Sustainability Research, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Nazaré Couto
- CENSE - Center for Environmental and Sustainability Research, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Eduardo P Mateus
- CENSE - Center for Environmental and Sustainability Research, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Alexandra B Ribeiro
- CENSE - Center for Environmental and Sustainability Research, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.
| |
Collapse
|
17
|
Ferreira AR, Guedes P, Mateus EP, Ribeiro AB, Couto N. Emerging organic contaminants in soil irrigated with effluent: electrochemical technology as a remediation strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140544. [PMID: 32652356 DOI: 10.1016/j.scitotenv.2020.140544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/05/2020] [Accepted: 06/24/2020] [Indexed: 05/22/2023]
Abstract
The effluent reuse for soil irrigation is foreseen as a possible strategy to mitigate the pressure on water resources. However, there is the risk of potential accumulation in soil of emerging organic contaminants (EOCs). In the present work the electrokinetic remediation (EKR) technology, use of direct current, was applied for the removal of EOCs from a soil irrigated with effluent. For this, a soil collected from a rice field (located in Portugal) was mixed with spiked effluent to simulate flood irrigation in one time-period. The experiments were carried out for 6 days applying a low current intensity of 2.5 mA. Different current strategies were tested: continuous mode, reversed electrode polarization (REP), On/Off time periods, and the combination of the last two. The target EOCs comprises a list of six pharmaceuticals and personal care products widely detected in treated wastewater. This study showed that once introduced in soil through effluent irrigation, 20-100% of the EOCs were still present in the soil after 6 days. EKR enhanced up to 20% of the EOCs removal when comparing with control (without current). The EOC removals showed to be related to the microcosm location (anode, central or cathode sections) and dependent of EOCs characteristics. Soil characteristics did not change when On/Off system was combined with REP as a current strategy, and a more homogenous removal of the studied EOCs was achieved in the tested conditions. EKR showed to be a promising technology to be applied in EOCs contaminated soils, not only for removal purposes, but also to avoid possible dispersion in the environment.
Collapse
Affiliation(s)
- Ana Rita Ferreira
- CENSE, Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Paula Guedes
- CENSE, Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, NOVA University Lisbon, Av. da República, 2780-157 Oeiras, Portugal
| | - Eduardo P Mateus
- CENSE, Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Alexandra B Ribeiro
- CENSE, Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.
| | - Nazaré Couto
- CENSE, Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
18
|
Beyrami H. Effect of different treatments on electrokinetic remediation of Zn, Pb and Cd from a contaminated calcareous soil. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|