1
|
Lyu Q, Feng Z, Liu Y, Wang J, Xu L, Tian X, Yan Z, Ji G. Analysis of latrine fecal odor release pattern and the deodorization with composited microbial agent. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:371-384. [PMID: 38432182 DOI: 10.1016/j.wasman.2024.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
As an important source of malodor, the odor gases emitted from public toilet significantly interfered the air quality of living surroundings, resulting in environmental problem which received little attention before. Thus, this paper explored the odor release pattern of latrine feces and deodorization effect with composited microbial agent in Chengdu, China. The odor release rules were investigated in sealed installations with a working volume of 9 L for 20 days. The odor units (OU), ammonia (NH3), hydrogen sulfide (H2S) and total volatile organic compounds (TVOC) were selected to assess the release of malodorous gases under different temperature and humidity, while the highest malodor release was observed under 45℃, with OU and TVOC concentration was 643.91 ± 2.49 and 7767.33 ± 33.50 mg/m3, respectively. Microbes with deodorization ability were screened and mixed into an agent, which composited of Bacillus amyloliquefaciens, Lactobacillus plantarum, Enterococcus faecalis and Pichia fermentans. The addition of microbial deodorant could significantly suppress the release of malodor gas during a 20-day trial, and the removal efficiency of NH3, H2S, TVOC and OU was 81.50 %, 38.31 %, 64.38 %, and 76.86 %, respectively. The analysis of microbial community structure showed that temperature was the main environmental factor driving the microbial variations in latrine feces, while Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes were the main bacteria phyla involved in the formation and emission of malodorous gases. However, after adding the deodorant, the abundance of Bacteroidetes, Proteobacteria and Actinobacteria were decreased, while the abundance of Firmicutes was increased. Furthermore, P. fermentans successfully colonized in fecal substrates and became the dominant fungus after deodorization. These results expanded the understanding of the odor release from latrine feces, and the composited microbial deodorant provided a valuable basis to the management of odor pollution.
Collapse
Affiliation(s)
- Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhaozhuo Feng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jialing Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lishan Xu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xueping Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Gaosheng Ji
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
2
|
Zhu X, Yang X, Gao W, Zhao S, Zhang W, Yu P, Wang D. Malodorous volatile organic compounds (MVOCs) formation after dewatering of wastewater sludge: Correlation with the extracellular polymeric substances (EPS) and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161491. [PMID: 36634527 DOI: 10.1016/j.scitotenv.2023.161491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Malodorous volatile organic compounds (MVOCs) are often the key odorants in determining sludge odor character and odor impact. However, the emission characterization and generation mechanisms of MVOCs from various dewatered sludge have not been sufficiently understood partly due to the diverse and complex composition and low concentration of odorants. In this study, waste activated sludge (WAS) was collected to examine the variation of MVOC emission from sludge after different dewatering treatment in lab-scale trials. The MVOCs were measured using the electronic nose (eNose), headspace gas chromatography-coupled ion mobility spectrometry (HS-GC-IMS), and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results showed that centrifugation treatment promoted the generation of various odorous volatiles. The identified key odorants included dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), geosmin, and p-cresol according to their odor activity values (OAVs). The effects of the enhanced dewatering on volatile production were greater than thickening, however, the key odorants of dewatered sludge using gravity thickening varied more greatly than sludges from centrifuge thickening. The distribution of extracellular polymeric substances (EPS) and variation of microbial community showed correlations with the production of key odorants. Tryptophan-like substances in the inner layer of EPS (LB-EPS and TB-EPS) were better correlated with the key odorants. The bound EPS released by centrifugation may play the role of precursor for odorous microbial volatiles. According to the predicted functions of differential microbial genera, Desulfobulbus (Desulfobacterota), Gordonia (Actinobacteriota), and Hyphomicrobium (Proteobacteria) were associated with the production of DMS, DMDS, and DMTS, while Gordonia and Hyphomicrobium were related to p-cresol production.
Collapse
Affiliation(s)
- Xinmeng Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, China
| | - Xiaofang Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, China.
| | - Wei Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, China
| | - Shan Zhao
- Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Pingfeng Yu
- Department of Environment Engineering, Zhejiang University, Hangzhou 310058, China
| | - Dongsheng Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Department of Environment Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Lin Q, Gao Z, Zhu W, Chen J, An T. Underestimated contribution of fugitive emission to VOCs in pharmaceutical industry based on pollution characteristics, odorous activity and health risk assessment. J Environ Sci (China) 2023; 126:722-733. [PMID: 36503797 DOI: 10.1016/j.jes.2022.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 06/17/2023]
Abstract
Fugitive emission has been becoming an important source of volatile organic compounds (VOCs) in pharmaceutical industry, but the exact contribution of fugitive emission remains incompletely understood. In present study, pollution characteristics, odorous activity and health risk of stack and fugitive emissions of VOCs from four functional units (e.g., workshop, sewage treatment station, raw material storage and hazardous waste storage) of three representative pharmaceutical factories were investigated. Workshop was the dominant contributor to VOCs of fugitive emission in comparison with other functional units. Extreme high concentration of VOCs from fugitive emission in unsealed workshop (94.87 mg/m3) was observed relative to sealed one (1.18 mg/m3), accounting for 31% and 5% of total VOCs, respectively. Fugitive emission of VOCs in the unsealed workshop mainly consisted of n-hexane, 1-hexene and dichloromethane. Odorous activity indexes and non-cancer hazard ratios of these VOCs from fugitive emission in the unsealed workshop were as high as that from stack exhaust. Furthermore, cancer risk of dichloromethane from fugitive emission and stack exhaust was up to (1.6-1.8) × 10-5. Odorous activity or health risk index of the VOCs from fugitive emission was up to 13 or 11 times of the corresponding threshold value, posing remarkable health threat on pharmaceutical workers. Our findings highlighted the possibly underestimated contribution of fugitive emission on VOCs in the pharmaceutical industry.
Collapse
Affiliation(s)
- Qinhao Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhong Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Weikun Zhu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Zhao J, Zhou B, Wang P, Ren F, Mao X. Physicochemical properties of fluid milk with different heat treatments and HS-GC-IMS identification of volatile organic compounds. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Wu X, Li W, Li C, Yin J, Wu T, Zhang M, Zhu L, Chen H, Zhang X, Bie S, Li F, Song X, Gong X, Yu H, Li Z. Discrimination and characterization of the volatile organic compounds of Acori tatarinowii rhizoma based on headspace-gas chromatography-ion mobility spectrometry and headspace solid phase microextraction-gas chromatography-mass spectrometry. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
6
|
Biocontrol of Geosmin Production by Inoculation of Native Microbiota during the Daqu-Making Process. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Geosmin produced by Streptomyces can cause an earthy off-flavor at trace levels, seriously deteriorating the quality of Chinese liquor. Geosmin was detected during the Daqu (Chinese liquor fermentation starter)-making process, which is a multi-species fermentation process in an open system. Here, biocontrol, using the native microbiota present in Daqu making, was used to control the geosmin contamination. Six native strains were obtained according to their inhibitory effects on Streptomyces and then were inoculated into the Daqu fermentation. After inoculation, the content of geosmin decreased by 34.40% (from 7.18 ± 0.13 μg/kg to 4.71 ± 0.30 μg/kg) in the early stage and by 55.20% (from 8.86 ± 1.54 μg/kg to 3.97 ± 0.78 μg/kg) in the late stage. High-throughput sequencing combined with an interaction network revealed that the fungal community played an important role in the early stage and the correlation between Pichia and Streptomyces changed from the original indirect promotion to direct inhibition after inoculation. This study provides an effective strategy for controlling geosmin contamination in Daqu via precisely regulating microbial communities, as well as highlights the potential of biocontrol for controlling off-flavor chemicals at trace levels in complex fermentation systems.
Collapse
|
7
|
Identification of changes in volatile compounds in sea cucumber Apostichopus japonicus during seasonings soaking using HS-GC-IMS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Yin J, Lin R, Wu M, Ding H, Han L, Yang W, Song X, Li W, Qu H, Yu H, Li Z. Strategy for the multi-component characterization and quality evaluation of volatile organic components in Kaixin San by correlating the analysis by headspace gas chromatography/ion mobility spectrometry and headspace gas chromatography/mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9174. [PMID: 34350664 DOI: 10.1002/rcm.9174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Kaixin San (KXS) is a prescription traditional Chinese medicine (TCM) with the effects of "tonifying the kidney and brain" and "improving memory". The volatile organic compounds (VOCs) in KXS could effectively improve senile dementia and depression, but only few studies have focused on the overall characterization of VOCs in KXS and the quantitative study of the main active components. METHODS We have developed a strategy to correlate the results from headspace gas chromatography/ion mobility spectrometry (HS-GC/IMS) and headspace gas chromatography/mass spectrometry (HS-GC/MS) for the comprehensive characterization of VOCs in KXS and the quantitative analysis of the main pharmacodynamic substances. RESULTS A totsal of 68 low molecular weight VOCs were identified in KXS by HS-GC/IMS at room temperature and atmospheric pressure; 117 VOCs were identified and 10 components (isocalamenediol, α-asarone, β-asarone, methyl eugenol, isoeugenol methyl ether, camphor, anethol, 2,4-di-tert-butylphol, linalool, asarylaldehyde) as the quality markers of KXS based on HS-GC/MS. CONCLUSIONS This results from this study provide a foundation for quality control, pharmacodynamic mechanism research and further development of KXS, and provides more convincing data supporting the VOCs of other natural products.
Collapse
Affiliation(s)
- Jiaxin Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruimei Lin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengfan Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Ding
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinbo Song
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Yin J, Wu M, Lin R, Li X, Ding H, Han L, Yang W, Song X, Li W, Qu H, Yu H, Li Z. Application and development trends of gas chromatography–ion mobility spectrometry for traditional Chinese medicine, clinical, food and environmental analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106527] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Chen J, Tao L, Zhang T, Zhang J, Wu T, Luan D, Ni L, Wang X, Zhong J. Effect of four types of thermal processing methods on the aroma profiles of acidity regulator-treated tilapia muscles using E-nose, HS-SPME-GC-MS, and HS-GC-IMS. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111585] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Liu J, Liu M, Liu Y, Jia M, Wang S, Kang X, Sun H, Strappe P, Zhou Z. Moisture content is a key factor responsible for inducing rice yellowing. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|