1
|
Rupakheti D, Aculinin A, Rupakheti M, Dahal S, Rai M, Yin X, Yu X, Abdullaev SF, Hu J. Insights on aerosol properties using two decades-long ground-based remote sensing datasets in Moldova, Eastern Europe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122535. [PMID: 37696329 DOI: 10.1016/j.envpol.2023.122535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Aerosol optical properties were studied over Chisinau in Moldova, one of the longest running AERONET sites in Eastern Europe. During two decades (September 1999-November 2018), the mean aerosol optical depth (AOD) and Angstrom exponent (AE) were observed as 0.21 ± 0.13 and 1.49 ± 0.29, respectively. The highest AOD (0.24 ± 0.13) and AE (1.60 ± 0.26) were observed during the summer. More than half (∼55%) of the share was occupied by clean continental aerosols with seasonal order of winter (74.8%) > autumn (62%) > spring (48.9%) > summer (44.8%) followed by mixed aerosols with a respective contribution of 30.7% (summer), 28.4% (spring), 22.5 (autumn) and 16.4% (winter). A clear dominance of volume size distribution in the fine mode indicated the stronger influence of anthropogenic activities resulting in fine aerosol load in the atmosphere. The peak in the fine mode was centered at 0.15 μm, whereas that of the coarse mode was centered either at 3.86 μm (summer and autumn) or 5.06 μm (spring and winter). 'Extreme' aerosol events were observed during 21 days with a mean AOD (AE) of 0.99 ± 0.32 (1.43 ± 0.43), whereas 'strong' events were observed during 123 days with a mean AOD (AE) of 0.57 ± 0.07 (1.44 ± 0.40), mainly influenced by anthropogenic aerosols (during 19 and 101 days of each event type) from urban/industrial and biomass burning indicated by high AE and fine mode fraction. During the whole period (excluding events days), the fine and coarse mode peaks were observed at the radius of 0.15 and 5.06 μm, which in the case of extreme (strong) events were at 0.19 (0.15) and 3.86 (2.24) μm respectively. The fine mode volume concentration was 4.78 and 3.32 times higher, whereas the coarse mode volume concentration was higher by a factor of 1.98 and 2.27 during extreme and strong events compared to the whole period.
Collapse
Affiliation(s)
- Dipesh Rupakheti
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Institute of Fundamental Research and Studies (InFeRS), Kathmandu 44600, Nepal
| | - Alexandr Aculinin
- Institute of Applied Physics (IAP), Moldova State University (MSU), 5 Academiei Str., Chisinau, MD-2028, Moldova
| | - Maheswar Rupakheti
- Research Institute for Sustainability-Helmholtz Centre Potsdam, Potsdam, Germany
| | - Sishir Dahal
- Department of Civil Engineering, Himalaya College of Engineering, Lalitpur, Nepal
| | - Mukesh Rai
- Greenhood Nepal, New Baneshwor, Kathmandu 45305, Nepal
| | - Xiufeng Yin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xingna Yu
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Sabur F Abdullaev
- Physical Technical Institute of the Academy of Sciences of Tajikistan, Dushanbe, Tajikistan
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
2
|
Ramachandran S, Rupakheti M, Cherian R, Lawrence MG. Aerosols heat up the Himalayan climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164733. [PMID: 37327904 DOI: 10.1016/j.scitotenv.2023.164733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
The impact of aerosols, especially the absorbing aerosols, in the Himalayan region is important for climate. We closely examine ground-based high-quality observations of aerosol characteristics including radiative forcing from several locations in the Indo-Gangetic Plain (IGP), the Himalayan foothills and the Tibetan Plateau, relatively poorly studied regions with several sensitive ecosystems of global importance, as well as highly vulnerable large populations. This paper presents a state-of-the-art treatment of the warming that arises from these particles, using a combination of new measurements and modeling techniques. This is a first-time analysis of its kind, including ground-based observations, satellite data, and model simulations, which reveals that the aerosol radiative forcing efficiency (ARFE) in the atmosphere is clearly high over the IGP and the Himalayan foothills (80-135 Wm-2 per unit aerosol optical depth (AOD)), with values being greater at higher elevations. AOD is >0.30 and single scattering albedo (SSA) is ∼0.90 throughout the year over this region. The mean ARFE is 2-4 times higher here than over other polluted sites in South and East Asia, owing to higher AOD and aerosol absorption (i.e., lower SSA). Further, the observed annual mean aerosol-induced atmospheric heating rates (0.5-0.8 Kelvin/day), which are significantly higher than previously reported values for the region, imply that the aerosols alone could account for >50 % of the total warming (aerosols + greenhouse gases) of the lower atmosphere and surface over this region. We demonstrate that the current state-of-the-art models used in climate assessments significantly underestimate aerosol-induced heating, efficiency and warming over the Hindu Kush - Himalaya - Tibetan Plateau (HKHTP) region, indicating a need for a more realistic representation of aerosol properties, especially of black carbon and other aerosols. The significant, regionally coherent aerosol-induced warming that we observe in the high altitudes of the region, is a significant factor contributing to increasing air temperature, observed accelerated retreat of the glaciers, and changes in the hydrological cycle and precipitation patterns over this region. Thus, aerosols are heating up the Himalayan climate, and will remain a key factor driving climate change over the region.
Collapse
Affiliation(s)
- S Ramachandran
- Physical Research Laboratory, Ahmedabad, India; Research Institute for Sustainability - Helmholtz Centre Potsdam, Potsdam, Germany.
| | - Maheswar Rupakheti
- Research Institute for Sustainability - Helmholtz Centre Potsdam, Potsdam, Germany
| | - Ribu Cherian
- Leipzig Institute for Meteorology, University of Leipzig, Leipzig, Germany
| | - Mark G Lawrence
- Research Institute for Sustainability - Helmholtz Centre Potsdam, Potsdam, Germany; Institute for Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany
| |
Collapse
|
3
|
Kelesidis GA, Neubauer D, Fan LS, Lohmann U, Pratsinis SE. Enhanced Light Absorption and Radiative Forcing by Black Carbon Agglomerates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8610-8618. [PMID: 35652563 PMCID: PMC9228049 DOI: 10.1021/acs.est.2c00428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 05/19/2023]
Abstract
The climate models of the Intergovernmental Panel on Climate Change list black carbon (BC) as an important contributor to global warming based on its radiative forcing (RF) impact. Examining closely these models, it becomes apparent that they might underpredict significantly the direct RF for BC, largely due to their assumed spherical BC morphology. Specifically, the light absorption and direct RF of BC agglomerates are enhanced by light scattering between their constituent primary particles as determined by the Rayleigh-Debye-Gans theory interfaced with discrete dipole approximation and recent relations for the refractive index and lensing effect. The light absorption of BC is enhanced by about 20% by the multiple light scattering between BC primary particles regardless of the compactness of their agglomerates. The resulting light absorption agrees very well with the observed absorption aerosol optical depth of BC. ECHAM-HAM simulations accounting for the realistic BC morphology and its coatings reveal high direct RF = 3-5 W/m2 in East, South Asia, sub-Sahara, western Africa, and the Arabian peninsula. These results are in agreement with satellite and AERONET observations of RF and indicate a regional climate warming contribution by 0.75-1.25 °C, solely due to BC emissions.
Collapse
Affiliation(s)
- Georgios A. Kelesidis
- Particle
Technology Laboratory, Institute of Energy and Process Engineering,
Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, CH-8092 Zürich, Switzerland
| | - David Neubauer
- Institute
of Atmospheric and Climate Science, Department of Environmental Systems
Science, ETH Zürich, Universitaetstrasse 16, CH-8092 Zürich, Switzerland
| | - Liang-Shih Fan
- Department
of Chemical and Biomolecular Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, Ohio 43210, United States
| | - Ulrike Lohmann
- Institute
of Atmospheric and Climate Science, Department of Environmental Systems
Science, ETH Zürich, Universitaetstrasse 16, CH-8092 Zürich, Switzerland
| | - Sotiris E. Pratsinis
- Particle
Technology Laboratory, Institute of Energy and Process Engineering,
Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, CH-8092 Zürich, Switzerland
| |
Collapse
|
4
|
Dumka UC, Kaskaoutis DG, Mihalopoulos N, Sheoran R. Identification of key aerosol types and mixing states in the central Indian Himalayas during the GVAX campaign: the role of particle size in aerosol classification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143188. [PMID: 33143923 DOI: 10.1016/j.scitotenv.2020.143188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Studies in aerosol properties, types and sources in the Himalayas are important for atmospheric and climatic issues due to high aerosol loading in the neighboring plains. This study uses in situ measurements of aerosol optical and microphysical properties obtained during the Ganges Valley Aerosol eXperiment (GVAX) at Nainital, India over the period June 2011-March 2012, aiming to identify key aerosol types and mixing states for two particle sizes (PM1 and PM10). Using a classification matrix based on SAE vs. AAE thresholds (scattering vs. absorption Ångström exponents, respectively), seven aerosol types are identified, which are highly dependent on particle size. An aerosol type named "large/BC mix" dominates in both PM1 (45.4%) and PM10 (46.9%) mass, characterized by aged BC mixed with other aerosols, indicating a wide range of particle sizes and mixing states. Small particles with low spectral dependence of the absorption (AAE < 1) account for 31.6% and BC-dominated aerosols for 14.8% in PM1, while in PM10, a large fraction (39%) corresponds to "large/low-absorbing" aerosols and only 3.9% is characterized as "BC-dominated". The remaining types consist of mixtures of dust and local emissions from biofuel burning and display very small fractions. The main optical properties e.g. spectral scattering, absorption, single scattering albedo, activation ratio, as well as seasonality and dependence on wind speed and direction of identified types are examined, revealing a large influence of air masses originating from the Indo-Gangetic Plains. This indicates that aerosols over the central Himalayas are mostly composed by mixtures of processed and transported polluted plumes from the plains. This is the first study that identifies key aerosol populations in the central Indian Himalayas based on in situ measurements and the results are highly important for aerosol-type inventories, chemical transport models and reducing the uncertainty in aerosol radiative forcing over the third pole.
Collapse
Affiliation(s)
- U C Dumka
- Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital 263 001, India.
| | - D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Crete, Greece.
| | - N Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Crete, Greece
| | - Rahul Sheoran
- Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital 263 001, India
| |
Collapse
|