1
|
Wei L, Yu Z, Zhu C, Chen Y, Pei Z, Li Y, Yang R, Zhang Q, Jiang G. An evaluation of the impact of traffic on the distribution of PAHs and oxygenated PAHs in the soils and moss of the southeast Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160938. [PMID: 36526168 DOI: 10.1016/j.scitotenv.2022.160938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Contaminants in high-altitude mountains such as the Tibetan Plateau (TP) have attracted extensive attention due to their potential impact on fragile ecosystems. Rapid development of the economy and society has promoted pollution caused by local traffic emissions in the TP. Among the pollutants emitted by traffic, polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) are of particular concern due to their high toxicity. The TP provides an environment to explore the degree and range of contribution for traffic-induced PAHs and OPAHs. In this study, soils and moss were collected at different altitudes and distances from the G318 highway in the southeast TP. The total concentrations of PAHs (∑16PAHs) and OPAHs (∑6OPAHs) in soils were in the range of 3.29-119 ng/g dry weight (dw) and 0.54-9.65 ng/g dw, respectively. ∑16PAH and ∑6OPAH concentrations decreased logarithmically with increasing distance from traffic. A significantly positive correlation between ∑16PAHs and altitude was found at sampling points closest to traffic. Dominant PAHs constituents in soil and moss included chrysene (CHR), benzo[g,h,i]perylene (BghiP), and benzo[b]fluoranthene (BbF); prevalent OPAH compounds were 9-fluorenone (9-FO) and 9,10-anthraquinone (ATQ). These compounds were related to characteristics of traffic emissions. The multiple diagnosis ratio and correlation analysis showed that exhaust emissions were the main source of the PAHs and OPAHs in the studied environment. PMF modeling quantification of the relative contribution of traffic emissions to PAHs in roadside soils was 45 % on average. The present study characterized the extent and range of traffic-induced PAH and OPAH emissions, providing valuable information for understanding the environmental behaviors and potential risks of traffic-related contaminants in high-altitude areas.
Collapse
Affiliation(s)
- Lijia Wei
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhigang Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chengcheng Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiqiang Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Ali M, Song X, Ding D, Wang Q, Zhang Z, Tang Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118686. [PMID: 34920044 DOI: 10.1016/j.envpol.2021.118686] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/20/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Systemic studies on the bioremediation of co-contaminated PAHs and heavy metals are lacking, and this paper provides an in-depth review on the topic. The released sources and transport of co-contaminated PAHs and heavy metals, including their co-occurrence through formation of cation-π interactions and their adsorption in soil are examined. Moreover, it is investigated that co-contamination of PAHs and heavy metals can drive a synergistic positive influence on bioremediation through enhanced secretion of extracellular polymeric substances (EPSs), production of biosynthetic genes, organic acid and enzymatic proliferation. However, PAHs molecular structure, PAHs-heavy metals bioavailability and their interactive cytotoxic effects on microorganisms can exert a challenging influence on the bioremediation under co-contaminated conditions. The fluctuations in bioavailability for microorganisms are associated with soil properties, chemical coordinative interactions, and biological activities under the co-contaminated PAHs-heavy metals conditions. The interactive cytotoxicity caused by the emergence of co-contaminants includes microbial cell disruption, denaturation of DNA and protein structure, and deregulation of antioxidant biological molecules. Finally, this paper presents the emerging strategies to overcome the bioavailability problems and recommends the use of biostimulation and bioaugmentation along with the microbial immobilization for enhanced bioremediation of PAHs-heavy metals co-contaminated sites. Better knowledge of the bioremediation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of PAHs and heavy metals co-contamination in the near future.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Wang Q, Lv KN, Wang AT, Liu X, Yin G, Wang J, Du X, Li J, Yuan GL. Release of phthalate esters from a local landfill in the Tibetan Plateau: Importance of soil particle-size specific association. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151281. [PMID: 34743884 DOI: 10.1016/j.scitotenv.2021.151281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
High loads of phthalate esters (PAEs) in background regions can be directly attributed to the local sources, and their association with soil particles may determine the environment behaviors. However, little is known about the particle-size specific distributions of PAEs in soils from point source to the surroundings. In this study, 12 PAE congeners were measured in clay (< 2 μm), silt (2-63 μm) and sand fractions (63-250 μm) from surficial soils and soil profiles (0-200 cm) around the Lhasa landfill. The total concentrations of PAEs in bulk soils varied from 0.44 to 22.3 μg/g, with a dominance of bis(2-ethylhexyl) phthalate (DEHP). The clay-sorbed PAEs exhibited a decreasing trend with the increasing distance from landfill. This distribution pattern was well described by the Gaussian air pollution model, suggesting the airborne particles/gaseous transport of clay-sorbed PAEs. The Boltzmann equation explained the spatial variation of silt-sorbed PAEs, reflecting the atmospheric dispersion of silt-sorbed PAEs. In comparison, the sand-sorbed PAEs in surrounding soils showed downslope accumulation possibly due to the aeolian transport of sand particles. Half-life of the most abundant PAE congener DEHP was assumed based on the soil inventories from observed concentration and the Level III fugacity model simulations, and the results indicated significant longer half-life of DEHP in deeper soils (~24,000 h) than in surficial soils (5500 h). This study elucidates that the distribution and fate of soil PAEs would depend on their association with particles in the source area, and the relative stability of DEHP in deeper soils would further increase PAE inventory in soil compartment.
Collapse
Affiliation(s)
- Qi Wang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Kai-Ning Lv
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - An-Ting Wang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Xiaojun Liu
- Université de technologie de Compiègne, ESCOM, TIMR, Centre de recherches Royallieu, CS 60 319, 60 203 Compiègne CEDEX, France
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai 200233, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, China Agricultural University, Beijing 100193, China; College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Guo-Li Yuan
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
4
|
Kumar M, Bolan NS, Hoang SA, Sawarkar AD, Jasemizad T, Gao B, Keerthanan S, Padhye LP, Singh L, Kumar S, Vithanage M, Li Y, Zhang M, Kirkham MB, Vinu A, Rinklebe J. Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade? JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126534. [PMID: 34280720 DOI: 10.1016/j.jhazmat.2021.126534] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/26/2021] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are generated due to incomplete burning of organic substances. Use of fossil fuels is the primary anthropogenic cause of PAHs emission in natural settings. Although several PAH compounds exist in the natural environmental setting, only 16 of these compounds are considered priority pollutants. PAHs imposes several health impacts on humans and other living organisms due to their carcinogenic, mutagenic, or teratogenic properties. The specific characteristics of PAHs, such as their high hydrophobicity and low water solubility, influence their active adsorption onto soils and sediments, affecting their bioavailability and subsequent degradation. Therefore, this review first discusses various sources of PAHs, including source identification techniques, bioavailability, and interactions of PAHs with soils and sediments. Then this review addresses the remediation technologies adopted so far of PAHs in soils and sediments using immobilization techniques (capping, stabilization, dredging, and excavation), mobilization techniques (thermal desorption, washing, electrokinetics, and surfactant assisted), and biological degradation techniques. The pros and cons of each technology are discussed. A detailed systematic compilation of eco-friendly approaches used to degrade PAHs, such as phytoremediation, microbial remediation, and emerging hybrid or integrated technologies are reviewed along with case studies and provided prospects for future research.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; College of Engineering, Science and Environment, University of Newcastle, Callaghan NSW, 2308, Australia
| | - Son A Hoang
- College of Engineering, Science and Environment, University of Newcastle, Callaghan NSW, 2308, Australia
| | - Ankush D Sawarkar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, 440 010, India
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Bowen Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Yang Li
- Department of Environmental Engineering, China Jiliang University, Zhejiang, Hangzhou 310018, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Zhejiang, Hangzhou 310018, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States of America
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|