1
|
Ma X, Liu X, Shang X, Zhao Y, Zhang Z, Lin C, He M, Ouyang W. Efficient roxarsone degradation by low-dose peroxymonosulfate with the activation of recycling iron-base composite material: Critical role of electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134087. [PMID: 38518697 DOI: 10.1016/j.jhazmat.2024.134087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Pollutant degradation via electron transfer based on advanced oxidation processes (AOPs) provides an economical and energy-efficient method for pollution control. In this study, an iron-rich waste, heating pad waste (HPW), was recycled as a raw material, and a strong magnetic catalyst (Fe-HPW) was synthesized at high temperature (900 °C). Results showed that in the constructed Fe-HPW/PMS system, effective roxarsone (ROX) degradation and TOC removal (72.54%) were achieved at a low-dose of oxidant (PMS, 0.05 mM) and catalyst (Fe-HPW, 0.05 g L-1), the ratio of PMS to ROX was only 2.5:1. In addition, the released inorganic arsenic was effectively removed from the solution. The analysis of the experimental results showed that ROX was effectively degraded by forming PMS/catalyst surface complexes (Fe-HPW-PMS*) to mediate electron transfer in the Fe-HPW/PMS system. Besides, this system performed effective ROX degradation over a wide pH range (pH=3-9) and showed high resistance to different water parameters. Overall, this study not only provides a new direction for the recycling application of HPW but also re-emphasizes the neglected nonradical pathway in advanced oxidation processes.
Collapse
Affiliation(s)
- Xiaoyu Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875.
| | - Xiao Shang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Zhenguo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
2
|
Liu X, Ren W, Lin M, Tan X, Wan C. Biomineralization behavior and mechanism of microbial-mediated removal of arsenate from water. ENVIRONMENTAL RESEARCH 2023; 231:116183. [PMID: 37201703 DOI: 10.1016/j.envres.2023.116183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The microbial-mediated removal of arsenate by biomineralization received much attention, but the molecular mechanism of Arsenic (As) removal by mixed microbial populations remains to be elucidated. In this study, a process for the arsenate treatment using sulfate-reducing bacteria (SRB) containing sludge was constructed, and the performance of As removal was investigated at different molar ratios of AsO43- to SO42-. It was found that biomineralization mediated by SRB could achieve the simultaneous removal of arsenate and sulfate from wastewater but only occurred when microbial metabolic processes were involved. The reducing ability of the microorganisms for the sulfate and arsenate was equivalent, so the precipitates produced at the molar ratio of AsO43- to SO42-of 2:3 were most significant. X-ray absorption fine structure (XAFS) spectroscopy was the first time used to determine the molecular structure of the precipitates which were confirmed to be orpiment (As2S3). Combined with the metagenomics analysis, the microbial metabolism mechanism of simultaneous removal of sulfate and arsenate by the mixed microbial population containing SRB was revealed, that is, the sulfate and As(V) were reduced by microbial enzymes to produce S2- and As(III) to further form As2S3 precipitates. This research provided a reference and theoretical foundation for the simultaneous removal of sulfate and arsenic mediated by SRB-containing sludge in wastewater treatment.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Wanqing Ren
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Miao Lin
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Xuejun Tan
- Shanghai Municipal Engineering Design Institute Group Co Ltd, Shanghai, 200092, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
3
|
Zhang Y, Xi H, Zhu Y, Zhao S, Ji C. Study on the composition and distribution characteristics of As in As-containing agent contaminated soil. ENVIRONMENTAL RESEARCH 2022; 214:114039. [PMID: 35948146 DOI: 10.1016/j.envres.2022.114039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/13/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, China and Japan are cooperating in the destruction of the Japanese army abandoned chemical weapons in China (JACWs). During the long-term burial of JACWs, As-containing agents leaked into the environment due to the corrosion of the shell, resulting in soil As pollution. This paper studied the fraction, speciation, and composition of As in the soil polluted by the As-containing agent in Jilin, China. The results showed that As was mainly distributed in the forest soil in the study area, with the highest concentration of 110 mg/kg, and had the trend of migration to the downhill farmland soil. As mainly accumulated in the amorphous Fe/Al oxides bounded fraction and residual states, the proportion of potentially risky fractions in the soil of downhill farmland is higher than that of uphill farmland. The speciation of As in the soil is mainly As(V), with an average content of 25.02 mg/kg. The transformation behavior of As in the horizontal migration of topsoil is mainly the oxidation of As (III). The residual organic As in soil mainly includes 2-chlorovinylarsonic acid, triphenylarsine, phenylarsine oxide, and diphenylarsonic acid. Similar to the influence factors of As, both speciation and organic compounds of As are significantly affected by Fe/Al/Mn-oxides, and degradation and transformation reactions such as redox occur during migration.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Chao Ji
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Zheng X, Zou D, Wu Q, Wang H, Li S, Liu F, Xiao Z. Review on fate and bioavailability of heavy metals during anaerobic digestion and composting of animal manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:75-89. [PMID: 35809372 DOI: 10.1016/j.wasman.2022.06.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 05/16/2023]
Abstract
Anaerobic digestion and composting are attracting increasing attention due to the increased production of animal manure. It is essential to know about the fate and bioavailability of heavy metals (HMs) for further utilisation of animal manure. This review has systematically summarised the migration of HMs and the transformation of several typical HMs (Cu, Zn, Cd, As, and Pb) during anaerobic digestion and composting. The results showed that organic matter degradation increased the HMs content in biogas residue and compost (with the exception of As in compost). HMs migrated into biogas residue during anaerobic digestion through various mechanisms. Most of HMs in biogas residue and compost exceeded relevant standards. Then, anaerobic digestion increased the bioavailable fractions proportion in Zn and Cd, decreased the F4 proportion, and raised them more than moderate environmental risks. As (III) was the main species in the digester, which extremely increased As toxicity. The increase of F3 proportion in Cu and Pb was due to sulphide formation in biogas residue. Whereas, the high humus content in compost greatly increased the F3 proportion in Cu. The F1 proportion in Zn decreased, but the plant availability of Zn in compost did not reduce significantly. Cd and As mainly converted the bioavailable fractions into stable fractions during composting, but As (V) toxicity needs to be concerned. Moreover, additives are only suitable for animal manure treated with slightly HM contaminated. Therefore, it is necessary to combine more comprehensive methods to improve the manure treatment and make product utilisation safer.
Collapse
Affiliation(s)
- Xiaochen Zheng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Qingdan Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Hua Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| | - Shuhui Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Fen Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
5
|
Xie X, Li J, Luo L, Liao W, Luo S. Phenylarsonics in concentrated animal feeding operations: Fate, associated risk, and treatment approaches. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128394. [PMID: 35158239 DOI: 10.1016/j.jhazmat.2022.128394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Phenylarsonics are present as additives in animal feed in some countries. As only a small fraction of these additives is metabolized in animals, they mostly end up in the environment. A comprehensive investigation of the fate of these additives is crucial for evaluating their risks. This review aims to provide a clear understanding of the transformation mechanism of phenylarsonics in vivo and in vitro and to evaluate their fate and associated risks. Degradation of phenylarsonics releases toxic As species (mainly as inorganic arsenic (iAs)). Trivalent phenylarsonics are the metabolites or biotic degradation intermediates of phenylarsonics. The cleavage of As groups from trivalent phenylarsonics catalyzed by C-As lyase or other unknown pathways generates arsenite (As(III)). As(III) can be further oxidized to arsenate (As(V)) and methylated to methyl-arsenic species. The half-lives associated with abiotic degradation of phenylarsonics ranged from a few minutes to tens of hours, while those associated with biotic degradation ranged from several days to hundreds of days. Abiotic degradation resulted in a higher yield of iAs than biotic degradation. The use of phenylarsonics led to elevated total As and iAs levels in animal products and environmental matrices, resulting in As exposure risk to humans. The oxidation of phenylarsonics to As(V) facilitated the sorptive removal of As, which provides a general approach for treating these compounds. This review provides solid evidence that the use of phenylarsonics has adverse effects on both human health and environmental safety, and therefore, supports their withdrawal from the global market.
Collapse
Affiliation(s)
- Xiande Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jingxia Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wenjuan Liao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
6
|
Graphite particles as third electrodes to enhance metal removal and energy saving in a stationary electrodialytic soil system. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Meng J, Yuan S, Wang W, Jin J, Zhan X, Xiao L, Hu ZH. Photodegradation of roxarsone in the aquatic environment: influencing factors, mechanisms, and artificial neural network modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7844-7852. [PMID: 34480704 DOI: 10.1007/s11356-021-16183-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Roxarsone (ROX), an organoarsenic feed additive, can be discharged into aquatic environment and photodegraded into more toxic inorganic arsenics. However, the photodegradation behavior of ROX in aquatic environment is still unclear. To better understand ROX photodegradation behavior, the influencing factors, photodegradation mechanism, and process modelling of ROX photodegradation were investigated in this study. The results showed that ROX in the aquatic environment was degraded to inorganic As(III) and As(V) under light irradiation. The degradation efficiency was enhanced by 25% with the increase of light intensity from 300 to 800 μW/cm2 via indirect photolysis. The photodegradation was temperature dependence, but was only slightly affected by pH. Nitrate ion (NO3-) had an obvious influence, but sulfate, carbonate, and chlorate ions had a negligible effect on ROX degradation. Dissolved organic matter (DOM) in the solution inhibited the photodegradation. ROX photodegradation was mainly mediated by reactive oxygen species (in the form of single oxygen 1O2) generated through ROX self-sensitization under irradiation. Based on the data of factors affecting ROX photodegradation, ROX photodegradation model was built and trained by an artificial neural network (ANN), and the predicted degradation rate was in good agreement with the real values with a root mean square error of 1.008. This study improved the understanding of ROX photodegradation behavior and provided a basis for controlling the pollution from ROX photodegradation.
Collapse
Affiliation(s)
- Jizhong Meng
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Juliang Jin
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
8
|
Tang R, Luo H, Prommer H, Yue Z, Wang W, Su K, Hu ZH. Response of anaerobic granular sludge to long-term loading of roxarsone: From macro- to micro-scale perspective. WATER RESEARCH 2021; 204:117599. [PMID: 34481285 DOI: 10.1016/j.watres.2021.117599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Extensive use of organoarsenic feed additives such as roxarsone has caused organoarsenicals to occur in livestock wastewater and further within anaerobic wastewater treatment systems. Currently, information on the long-term impacts of roxarsone on anaerobic granular sludge (AGS) activity and the underlying mechanisms is very limited. In this study, the response of AGS to long-term loading of roxarsone was investigated using a laboratory up-flow anaerobic sludge blanket reactor spiked with 5.0 mg L-1 of roxarsone. Under the effect of roxarsone, methane production decreased by ∼40% due to the complete inhibition on acetoclastic methanogenic activity on day 260, before being restored eventually. Over 30% of the influent arsenic was accumulated in the AGS and the capability of AGS to prevent intracellular As(III) accumulation increased with time. The AGS size was reduced by ∼30% to 1.20‒1.26 mm. Based on morphology and confocal laser scanning microscopy analysis, roxarsone exposure stimulated the excretion of extracellular polymeric substances and the surface spalling of AGS. High-throughput sequencing analysis further indicated roxarsone initially altered the acidogenic pathway and severely inhibited the acetoclastic methanogen Methanothrix. Acetogenic bacteria and Methanothrix were finally enriched and became the main contributor for a full restoration of the initial methane production. These findings provide a deeper understanding on the effect of organoarsenicals on AGS, which is highly beneficial for the effective anaerobic treatment of organoarsenic-bearing wastewater.
Collapse
Affiliation(s)
- Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Henning Prommer
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; School of Earth Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kuizu Su
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
9
|
Suresh R, Rajendran S, Hoang TKA, Vo DVN, Siddiqui MN, Cornejo-Ponce L. Recent progress in green and biopolymer based photocatalysts for the abatement of aquatic pollutants. ENVIRONMENTAL RESEARCH 2021; 199:111324. [PMID: 33991569 DOI: 10.1016/j.envres.2021.111324] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Enormous research studies on the abatement of anthropogenic aquatic pollutants including organic dyes, pesticides, cosmetics, antibiotics and inorganic species by using varieties of semiconductor photocatalysts have been reported in recent decades. Besides, many of these photocatalysts suffer in real applications owing to their high production cost and low stability. In many cases, the photocatalysts themselves are being considered as secondary pollutants. To eliminate these drawbacks, the green synthesized photocatalysts and the use of biopolymers as photocatalyst supports are considered in recent years. In this context, recent developments in green synthesized metals, metal oxides, other metal compounds, and carbon based photocatalysts in water purification are critically reviewed. Furthermore, the pivotal role of biopolymers including chitin, chitosan, cellulose, natural gum, hydroxyapatite, alginate in photocatalytic removal of aquatic pollutants is comprehensively reviewed. The presence of functional groups, electron trapping ability, biocompatibility, natural occurrence, and low production cost are the major reasons for using biopolymers in photocatalysis. Finally, the summary and conclusion are presented along with existing challenges in this research area.
Collapse
Affiliation(s)
- R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Mohammad Nahid Siddiqui
- Chemistry Department and IRC Membranes & Water Security, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Lorena Cornejo-Ponce
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| |
Collapse
|
10
|
Tang R, Wang Y, Yuan S, Wang W, Yue Z, Zhan X, Hu ZH. Organoarsenic feed additives in biological wastewater treatment processes: Removal, biotransformation, and associated impacts. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124789. [PMID: 33310328 DOI: 10.1016/j.jhazmat.2020.124789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Aromatic organoarsenicals are widely used in animal feeding operations and cause arsenic contamination on livestock wastewater and manure, thereby raising the risk of surface water pollution. Biological wastewater treatment processes are often used for livestock wastewater treatment. Organoarsenic removal and biotransformation under aerobic and anaerobic conditions, and the associated impacts have received extensive attention due to the potential threat to water security. The removal efficiency and biotransformation of organoarsenicals in biological treatment processes are reviewed. The underlying mechanisms are discussed in terms of functional microorganisms and genes. The impacts associated with organoarsenicals and their degradation products on microbial activity and performance of bioreactors are also documented. Based on the current research advancement, knowledge gaps and potential research in this field are discussed. Overall, this work delivers a comprehensive understanding on organoarsenic behaviors in biological wastewater treatment processes, and provides valuable information on the control of arsenic contamination from the degradation of organoarsenicals in biological wastewater treatment processes.
Collapse
Affiliation(s)
- Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yulan Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei 230009, China.
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinmin Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
11
|
Tang R, Prommer H, Yuan S, Wang W, Sun J, Jamieson J, Hu ZH. Enhancing Roxarsone Degradation and In Situ Arsenic Immobilization Using a Sulfate-Mediated Bioelectrochemical System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:393-401. [PMID: 33301302 DOI: 10.1021/acs.est.0c06781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Roxarsone (ROX) is widely used in animal farms, thereby producing organoarsenic-bearing manure/wastewater. ROX cannot be completely degraded and nor can its arsenical metabolites be effectively immobilized during anaerobic digestion, potentially causing arsenic contamination upon discharge to the environment. Herein, we designed and tested a sulfate-mediated bioelectrochemical system (BES) to enhance ROX degradation and in situ immobilization of the released inorganic arsenic. Using our BES (0.5 V voltage and 350 μM sulfate), ROX and its metabolite, 4-hydroxy-3-amino-phenylarsonic acid (HAPA), were completely degraded within 13-22 days. In contrast, the degradation efficiency of ROX and HAPA was <85% during 32-day anaerobic digestion. In a sulfate-mediated BES, 75.0-83.2% of the total arsenic was immobilized in the sludge, significantly more compared to the anaerobic digestion (34.1-57.3%). Our results demonstrate that the combination of sulfate amendment and voltage application exerted a synergetic effect on enhancing HAPA degradation and sulfide-driven arsenic precipitation. This finding was further verified using real swine wastewater. A double-cell BES experiment indicated that As(V) and sulfate were transported from the anode to the cathode chamber and coprecipitated as crystalline alacranite in the cathode chamber. These findings suggest that the sulfate-mediated BES is a promising technique for enhanced arsenic decontamination of organoarsenic-bearing manure/wastewater.
Collapse
Affiliation(s)
- Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Henning Prommer
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- National Centre for Groundwater Research and Training, Adelaide, South Australia 5001, Australia
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - James Jamieson
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|