1
|
Lv P, Chang S, Qin R, Zhou J, Wang W, Hong Q, Mei J, Yang S. Different roles of FeS and FeS 2 on magnetic FeS x for the selective adsorption of Hg 2+ from waste acids in smelters: Reaction mechanism, kinetics, and structure-activity relationship. CHEMOSPHERE 2024; 349:140917. [PMID: 38070609 DOI: 10.1016/j.chemosphere.2023.140917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Magnetic FeSx was developed as a high-performance sorbent for selectively adsorbing Hg2+ from waste acids in smelters. However, further improvement of its ability for Hg2+ adsorption was extremely restricted due to the lack of reaction mechanisms and structure-activity relationships. In this study, the roles of FeS and FeS2 on magnetic FeSx for Hg2+ adsorption were investigated with alternate adsorption of Hg2+ without/with Cl-. The structure-activity relationship of magnetic FeSx for Hg2+ adsorption and the negative effect of acid erosion were elucidated using kinetic analysis. FeS can react with Hg2+ with 1:1 stoichiometric ratio to form HgS, while FeS2 can react with Hg2+ in the presence of Cl- with novel 1:3 stoichiometric ratio to form Hg3S2Cl2. The rate of magnetic FeSx for Hg2+ adsorption was related to the instantaneous amounts of FeS and threefold FeS2 on magnetic FeSx and the amount of Hg2+ adsorbed. Meanwhile, its capacity for Hg2+ adsorption was related to the initial sum of FeS amount and threefold FeS2 amount on the surface and their ratios by acid erosion. Then, magnetic FeSx-400 was devised with adsorption rate of 2.12 mg g-1 min-1 and capacity of 1092 mg g-1 to recover Hg2+ from waste acids for centralized control.
Collapse
Affiliation(s)
- Pengjian Lv
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Shuai Chang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Ruiyang Qin
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jiajiong Zhou
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Weicheng Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Qianqian Hong
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jian Mei
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Shijian Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
2
|
Zhang Y, Wang H, Gao K, Huang D, Hou L, Yang Y. Efficient removal of Cs(I) from water using a novel Prussian blue and graphene oxide modified PVDF membrane: Preparation, characterization, and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156530. [PMID: 35679934 DOI: 10.1016/j.scitotenv.2022.156530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/06/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The Prussian blue (PB) blending membranes are promising candidates for the removal of trace radionuclide Cs+. Constructing a membrane with high flux and selectivity are challenging in its practical application. Here, a novel polyvinylidene fluoride (PVDF)-PB-graphene oxide (GO) modified membrane was fabricated via phase inversion for trace radionuclide cesium (137Cs) removal from water. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to analyze chemical composition and morphology of the membrane, and the properties in terms of water flux and Cs+ removal were studied under different PB dosage, pH and co-existing ions conditions. It was observed that the addition of GO improved the dispersion of PB, and the PVDF-PB-GO membrane presented the highest Cs+ removal efficiency (99.6 %) and water flux (1638.2 LMH/bar) at pH = 7 with 0.1 wt% GO and 5 wt% PB. In addition, Langmuir and pseudo-second-order kinetics models fitted well for Cs+ adsorption by the PVDF-PB-GO membrane, illustrating that the Cs+ was removed via chemical adsorption dominated by Fe(CN)64- defect sites of PB and the oxygen groups of GO. Furthermore, the membrane showed a significant selectivity and reusability towards trace radioactive cesium, even in the presence of excess co-existing ions and in real water, which strongly verified that the modified membrane had application potential.
Collapse
Affiliation(s)
- Yanjun Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Huixian Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Kexuan Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Doudou Huang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Li''an Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, PR China; Xi'an High-Tech Institute, Xi'an 710025, PR China
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, PR China.
| |
Collapse
|
3
|
Rehman F, Hussain Memon F, Ullah S, Jafar Mazumder MA, Al-Ahmed A, Khan F, Hussain Thebo K. Recent Development in Laminar Transition Metal Dichalcogenides-based Membranes Towards Water Desalination: A Review. CHEM REC 2022; 22:e202200107. [PMID: 35701111 DOI: 10.1002/tcr.202200107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Indexed: 11/12/2022]
Abstract
Transition metal dichalcogenides (TMDCs)-based laminar membranes have gained significant interest in energy storage, fuel cell, gas separation, wastewater treatment, and desalination applications due to single layer structure, good functionality, high mechanical strength, and chemical resistivity. Herein, we review the recent efforts and development on TMDCs-based laminar membranes, and focus is given on their fabrication strategies. Further, TMDCs-based laminar membranes for water purification and seawater desalination are discussed in detail. Finally, present their merits, limits and future challenges needed in this area.
Collapse
Affiliation(s)
- Faisal Rehman
- Department of Mechatronics, College of EME, National University of Sciences and Technology (NUST), Peshawar Road, Rawalpindi, Pakistan.,Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, Virginia, USA
| | - Fida Hussain Memon
- Department of Electrical Engineering, Sukkur IBA University, Sindh, Pakistan
| | - Sami Ullah
- K.A. CARE Energy Research & Innovation Center (ERIC), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad A Jafar Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Amir Al-Ahmed
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Firoz Khan
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang, China
| |
Collapse
|
4
|
Wang Y, Zhu X, Zhang X, Zheng J, Li H, Xie N, Guo Y, Sun HB, Zhang G. Direct sulfhydryl ligand derived UiO-66 for the removal of aqueous mercury and its subsequent application as a catalyst for transfer vinylation. Dalton Trans 2022; 51:4043-4051. [PMID: 35174835 DOI: 10.1039/d1dt04184c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment of mercury pollutants in water has been wide concern. Adsorption is a promising method for mercury removal that has been extensively studied. Nevertheless, the secondary application of the immobilized Hg is seldom investigated. In this paper, the Hg adsorption behavior of UiO-66 bearing sulfhydryl groups is studied. The research shows that the porous structure and sulfhydryl groups of UiO-66-SH can effectively promote the removal of mercury from water. In addition, this work also pushes forward the sequential application of the recovered adsorbent, which contains the adsorbed mercury that may cause secondary pollution. The recovered waste adsorbent, UiO-66-S-Hg, was successfully used as an efficient catalyst for transfer vinylation, which produces value-added products, vinyl benzoates. Eight vinyl esters have been successfully synthesized with a yield of up to 89%. This methodology provides a promising way for not only the treatment of mercury contamination, but also secondary pollution protection and the resource utilization of immobilized Hg.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Xu Zhu
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Xinyue Zhang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China. .,School of Materials Science and Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - Jianwei Zheng
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Hong Li
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Nianyi Xie
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Ying Guo
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Gang Zhang
- Department of Chemistry, Northeastern University, Shenyang 110819, People's Republic of China.
| |
Collapse
|
5
|
Memon FH, Rehman F, Lee J, Soomro F, Iqbal M, Khan SM, Ali A, Thebo KH, Choi KH. Transition Metal Dichalcogenide-based Membranes for Water Desalination, Gas Separation, and Energy Storage. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2037000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University, Jeju City Republic of Korea
- Department of Electrical Engineering, Sukkur IBA University, Pakistan
| | - Faisal Rehman
- Department of Mechatronics Engineering, College of EME, National University of Sciences and Technology, Peshawar Road, Rawalpindi, Pakistan
| | - Jaewook Lee
- Department of Mechatronics Engineering, Jeju National University, Jeju City Republic of Korea
| | - Faheeda Soomro
- Department of Human and Rehabilitation Sciences, Begum Nusrat Bhutto Women University, Sukkur, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Natural Science, University of Haripur KPK, Haripur, Pakistan
| | - Shah Masaud Khan
- Department of Horticulture, Faculty of Basic Science and Applied Sciences, University of Haripur KPK, Haripur, Pakistan
| | - Akbar Ali
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | | | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju City Republic of Korea
| |
Collapse
|
6
|
Wang R, Hu QH, Wang QY, Xiang YL, Huang SH, Liu YZ, Li SY, Chen QL, Zhou QH. Efficiently selective removal of Pb(II) by magnetic ion-imprinted membrane based on polyacrylonitrile electro-spun nanofibers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Venkateswarlu S, Yoon M, Kim MJ. An environmentally benign synthesis of Fe 3O 4 nanoparticles to Fe 3O 4 nanoclusters: Rapid separation and removal of Hg(II) from an aqueous medium. CHEMOSPHERE 2022; 286:131673. [PMID: 34358889 DOI: 10.1016/j.chemosphere.2021.131673] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
In the field of nanotechnology, nanoadsorbents have emerged as a powerful tool for the purification of contaminated aqueous environments. Among the variety of nanoadsorbents developed so far, magnetite (Fe3O4) nanoparticles have drawn particular interest because of their quick separation, low cost, flexibility, reproducibility, and environmentally benign nature. Herein, we describe a new strategy for the synthesis of Fe3O4 nanoclusters, which is based on the use of naturally available edible mushrooms (Pleurotus eryngii) and environmentally benign propylene glycol as a solvent medium. By tuning the temperature, we successfully convert Fe3O4 nanoparticles into Fe3O4 nanoclusters via hydrothermal treatment, as evidenced by transmission electron microscopy. The Fe3O4 nanoclusters are functionalized with an organic molecule linker (dihydrolipoic acid, DHLA) to remove hazardous Hg(II) ions selectively. Batch adsorption experiments demonstrate that Hg(II) ions are strongly adsorbed on the material surface, and X-ray photoelectron and Fourier transform infrared spectroscopy techniques reveal the Hg(II) removal mechanism. The DHLA@Fe3O4 nanoclusters show a high removal efficiency of 99.2 % with a maximum Hg(II) removal capacity of 140.84 mg g-1. A kinetic study shows that the adsorption equilibrium is rapidly reached within 60 min and follows a pseudo second-order kinetic model. The adsorption and separation system can be readily recycled using an external magnet when the separation occurs within 10 s. We have studied the effect of various factors on the adsorption process, including pH, concentration, dosage, and temperature. The newly synthesized superparamagnetic DHLA@Fe3O4 nanoclusters open a new path for further development of the medical, catalysis, and environmental fields.
Collapse
Affiliation(s)
- Sada Venkateswarlu
- Department of Chemistry, Gachon University, Seongnam, 1320, Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Myung Jong Kim
- Department of Chemistry, Gachon University, Seongnam, 1320, Republic of Korea.
| |
Collapse
|
8
|
Pang X, Bai H, Zhao H, Liu Y, Qin F, Han X, Fan W, Shi W. Biothiol-Functionalized Cuprous Oxide Sensor for Dual-Mode Sensitive Hg 2+ Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46980-46989. [PMID: 34581178 DOI: 10.1021/acsami.1c10260] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hg2+ ions are one of the highly poisonous heavy metal ions in the environment, so it is urgent to develop rapid and sensitive detection platforms for detecting Hg2+ ions. In this work, a novel electrochemical and photoelectrochemical dual-mode sensor (l-Cys-Cu2O) was successfully fabricated, and the sensor exhibits a satisfactory detection limit (0.2 and 0.01 nM) for the detection of Hg2+, which is far below the dangerous limit of the U.S. Environmental Protection Agency. The linear ranges of dual-mode Hg2+ detections were 0.33-3.3 and 0.17-1.33 μM, respectively. Moreover, the sensor shows desirable stability, selectivity, and reproducibility for detecting Hg2+ ions. For river water samples, the recoveries of 96.6-101.4% (electrochemical data) and 93.0-105.6% (photoelectrochemical data) were obtained, indicating that the sensor could be successfully applied in the determination of Hg2+ ions in environmental water. Therefore, the designed sensor has a potential in the trace-level detection of Hg2+ ions.
Collapse
Affiliation(s)
- Xuliang Pang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongye Bai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Huaiquan Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Youchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Feiyang Qin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xiao Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weiqiang Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
9
|
Wang Q, Dang Q, Liu C, Wang X, Li B, Xu Q, Liu H, Ji X, Zhang B, Cha D. Novel amidinothiourea-modified chitosan microparticles for selective removal of Hg(II) in solution. Carbohydr Polym 2021; 269:118273. [PMID: 34294305 DOI: 10.1016/j.carbpol.2021.118273] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Glutaraldehyde-crosslinked chitosan microparticles (CGP) prepared via the inversed-phase emulsification were successively modified by epichlorohydrin (ECH) and amidinothiourea (AT) as novel adsorbent (CGPET) for selective removal of Hg(II) in solution. FTIR, EA, XPS, SEM-EDX, TG, DTG, and XRD results indicated that CGPET had ample -NH2 and CS, relative rough surface, mean diameter of ~40 μm, great thermal stability, and crystalline degree of 2.4%, beneficial to the uptake of Hg(II). The optimum parameters (pH 5, dosage 1 g/L, contact time 4 h, and initial concentration 150 mg/L) were acquired via batches of adsorption experiments. Adsorption behavior was well described by the Liu isothermal and pseudo-second-order kinetics models, and the maximum adsorption capacity was 322.51 mg/g, surpassing many reported adsorbents. Regeneration and coexisting-ion tests demonstrated that CGPET had outstanding reusability (Rr > 86.89% at the fifth cycle) and selectivity (Rs > 93%). Besides, its potential adsorption sites and mechanisms were proposed.
Collapse
Affiliation(s)
- Qiongqiong Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| | - Xiaoyu Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Boyuan Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qing Xu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Hao Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Xuzhou Ji
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Bonian Zhang
- Qingdao Aorun Biotechnology Co., Ltd., Room 602, Century Mansion, 39 Donghaixi Road, Qingdao 266071, PR China
| | - Dongsu Cha
- The Graduate School of Biotechnology, Korea University, Seoul 136-701, South Korea
| |
Collapse
|
10
|
Aqueous Adsorption of Heavy Metals on Metal Sulfide Nanomaterials: Synthesis and Application. WATER 2021. [DOI: 10.3390/w13131843] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heavy metals pollution of aqueous solutions generates considerable concerns as they adversely impact the environment and health of humans. Among the remediation technologies, adsorption with metal sulfide nanomaterials has proven to be a promising strategy due to their cost-effective, environmentally friendly, surface modulational, and amenable properties. Their excellent adsorption characteristics are attributed to the inherently exposed sulfur atoms that interact with heavy metals through various processes. This work presents a comprehensive overview of the sequestration of heavy metals from water using metal sulfide nanomaterials. The common methods of synthesis, the structures, and the supports for metal sulfide nano-adsorbents are accentuated. The adsorption mechanisms and governing conditions and parameters are stressed. Practical heavy metal remediation application in aqueous media using metal sulfide nanomaterials is highlighted, and the existing research gaps are underscored.
Collapse
|
11
|
Applying Fe3O4-MoS2-chitosan nanocomposite to preconcentrate heavy metals from dairy products prior quantifying by FAAS. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04480-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Wang H, Quan J, Yu J, Zhu J, Wang Y, Hu Z. Enhanced wear resistance of ultra‐high molecular weight polyethylene fibers by modified‐graphite oxide. J Appl Polym Sci 2021. [DOI: 10.1002/app.50696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hongqiu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering, Donghua University Shanghai P.R. China
| | - Jiayou Quan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering, Donghua University Shanghai P.R. China
| | - Junrong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering, Donghua University Shanghai P.R. China
| | - Jing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering, Donghua University Shanghai P.R. China
| | - Yan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering, Donghua University Shanghai P.R. China
| | - Zuming Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering, Donghua University Shanghai P.R. China
| |
Collapse
|
13
|
Wei Z, Zhang S, Wang X, Long S, Yang J. A high Cr (
VI
) absorption efficiency and easy recovery adsorbent: Electrospun polyethersulfone/polydopamine nanofibers. J Appl Polym Sci 2021. [DOI: 10.1002/app.50642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhimei Wei
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
| | - Shouyu Zhang
- Jiangsu Jicui Advanced Polymer Materials Research Institute Co., Ltd Nanjing China
| | - Xiaojun Wang
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
| | - Shengru Long
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
| | - Jie Yang
- Institute of Materials Science and Technology, Analytical & Testing Center Sichuan University Chengdu China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| |
Collapse
|