1
|
Zheng S, Zhao N, Lin X, Qiu L. Impacts and potential mechanisms of fine particulate matter (PM 2.5) on male testosterone biosynthesis disruption. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:777-789. [PMID: 37651650 DOI: 10.1515/reveh-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Exposure to PM2.5 is the most significant air pollutant for health risk. The testosterone level in male is vulnerable to environmental toxicants. In the past, researchers focused more attention on the impacts of PM2.5 on respiratory system, cardiovascular system, and nervous system, and few researchers focused attention on the reproductive system. Recent studies have reported that PM2.5 involved in male testosterone biosynthesis disruption, which is closely associated with male reproductive health. However, the underlying mechanisms by which PM2.5 causes testosterone biosynthesis disruption are still not clear. To better understand its potential mechanisms, we based on the existing scientific publications to critically and comprehensively reviewed the role and potential mechanisms of PM2.5 that are participated in testosterone biosynthesis in male. In this review, we summarized the potential mechanisms of PM2.5 triggering the change of testosterone level in male, which involve in oxidative stress, inflammatory response, ferroptosis, pyroptosis, autophagy and mitophagy, microRNAs (miRNAs), endoplasmic reticulum (ER) stress, and N6-methyladenosine (m6A) modification. It will provide new suggestions and ideas for prevention and treatment of testosterone biosynthesis disruption caused by PM2.5 for future research.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Nannan Zhao
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Xiaojun Lin
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Lianglin Qiu
- School of Public Health, Nantong University, Nantong, P.R. China
| |
Collapse
|
2
|
Shang Y, Zhao K, Xue W, An J, Zhong Y, Chen Y, Zeng Q, Tang Q, Qiu X. Comparative assessment of acute neurotoxicity of real-world ultra-fine black carbon emitted from residential solid fuel combustion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176597. [PMID: 39349200 DOI: 10.1016/j.scitotenv.2024.176597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Incomplete combustion of residential solid fuel is one of the main anthropogenic sources for black carbon (BC). Fresh BC, mainly enriched in ultra-fine fraction of particles, can directly cross blood-brain barrier and are reported to be associated with neurodegenerative diseases. Because of the difficulties in collection and purification of BC from ambient particles, there are still significant knowledge gaps in understanding neurotoxicity caused by real-world BC. The purpose of this study is to compare the neurotoxic effects caused by BCs emitted from combustion of six residential solid fuels, and try to reveal associated biological mechanisms in SH-SY5Y cells. Two straw BC (Wheat-BC and Corn-BC) showed highest neurotoxic effects followed by wood BC (Pine-BC and Aspen-BC) and coal BC (Xvzhou and Longkou Coal), as indicated by viability, lactic dehydrogenase, malondialdehyde, adenosine triphosphate and acetylcholine levels. Coal BC caused nearly no toxicity in human neuroblastoma (SH-SY5Y) cells within highest dose of 200 μg/mL. RNA sequence and bioinformatics analysis were applied to effectively identify differential genes and signaling pathways. Based on Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, Protein Protein Interaction network (PPI network) construction, we found biomass BC affected mitochondrial function, interfered with cellular metabolic processes, disturbed redox homeostasis, and finally resulted in cellular damages. Coal-BC mainly caused cytokine/chemokine related inflammatory responses. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting methods were further applied to find out related signaling pathways. Biomass BC activated IL6R/JAK3/STAT3 and JAK3/STAT6 pathways leading to oxidative stress and inflammatory responses. Coal BC activated JAK3/STAT3 pathway leading to chemokine related responses. This study revealed the heterogeneity in neurotoxicity of BCs from different combustion sources and provided important data for health risk assessment. BC-related neurotoxicity should be considered when making air pollution emission control strategies, with residential biomass receiving more policy attention.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Kunming Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wanlei Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qingming Zeng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qisheng Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, Shanghai 200040, China.
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Exposure and Health Risk Management, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Chaiwangyen W, Khantamat O, Pintha K, Kangwan N, Onsa-Ard A, Nuntaboon P, Songkrao A, Thippraphan P, Chaiyasit D, de Sousa FLP. Cleistocalyx nervosum var. paniala mitigates oxidative stress and inflammation induced by PM 10 soluble extract in trophoblast cells via miR-146a-5p. Sci Rep 2024; 14:24265. [PMID: 39414845 PMCID: PMC11484928 DOI: 10.1038/s41598-024-73000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024] Open
Abstract
Air pollution poses a significant global concern, notably impacting pregnancy outcomes through mechanisms such as DNA damage, oxidative stress, inflammation, and altered miRNA expression, all of which can adversely affect trophoblast functions. Cleistocalyx nervosum var. paniala, known for its abundance of anthocyanins with diverse biological activities including anti-mutagenic, antioxidant, and anti-inflammatory properties, is the focus of this study examining its effect on Particulate Matter 10 (PM10) soluble extract-induced trophoblast cell dysfunction via miRNA expression. The study involved the extraction of C. nervosum fruit using 70% ethanol, followed by fractionation with hexane, dichloromethane, and ethyl acetate. Subsequent testing for total phenolics, flavonoids, anthocyanins, and antioxidant activity revealed the ethyl acetate fraction (CN-EtOAcF) as possessing the highest phenolic and anthocyanin content along with potent antioxidant activity, prompting its selection for further investigation. In vitro studies on HTR-8/SVneo cells demonstrated that 5-10 µg/mL PM10 soluble extract exposure inhibited cell proliferation, migration, invasion, and induced apoptosis. However, pretreatment with 20-80 µg/mL CN-EtOAcF followed by 5 µg/mL PM10 soluble extract exposure exhibited protective effects against PM10 soluble extract-induced damage, including inflammation inhibition and intracellular ROS suppression. Notably, CN-EtOAcF down-regulated PM10-induced miR-146a-5p expression, with SOX5 identified as a potential target. Overall, CN-EtOAcF demonstrated the potential to protect against PM10-induced harm in trophoblast cells, suggesting its possible application in future therapeutic approaches.
Collapse
Affiliation(s)
- Wittaya Chaiwangyen
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand.
| | - Orawan Khantamat
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Napapan Kangwan
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Amnart Onsa-Ard
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Piyawan Nuntaboon
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Angkana Songkrao
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Pilaiporn Thippraphan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Dana Chaiyasit
- Clinical Chemistry Laboratory, Chiang Rai Prachanukroh Hospital, Chiang Rai, 57000, Thailand
| | | |
Collapse
|
4
|
Zheng S, Jiang L, Qiu L. The effects of fine particulate matter on the blood-testis barrier and its potential mechanisms. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:233-249. [PMID: 36863426 DOI: 10.1515/reveh-2022-0204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/13/2022] [Indexed: 02/17/2024]
Abstract
With the rapid expansion of industrial scale, an increasing number of fine particulate matter (PM2.5) has bringing health concerns. Although exposure to PM2.5 has been clearly associated with male reproductive toxicity, the exact mechanisms are still unclear. Recent studies demonstrated that exposure to PM2.5 can disturb spermatogenesis through destroying the blood-testis barrier (BTB), consisting of different junction types, containing tight junctions (TJs), gap junctions (GJs), ectoplasmic specialization (ES) and desmosomes. The BTB is one of the tightest blood-tissue barriers among mammals, which isolating germ cells from hazardous substances and immune cell infiltration during spermatogenesis. Therefore, once the BTB is destroyed, hazardous substances and immune cells will enter seminiferous tubule and cause adversely reproductive effects. In addition, PM2.5 also has shown to cause cells and tissues injury via inducing autophagy, inflammation, sex hormones disorder, and oxidative stress. However, the exact mechanisms of the disruption of the BTB, induced by PM2.5, are still unclear. It is suggested that more research is required to identify the potential mechanisms. In this review, we aim to understand the adverse effects on the BTB after exposure to PM2.5 and explore its potential mechanisms, which provides novel insight into accounting for PM2.5-induced BTB injury.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, Nantong, P. R. China
| | - Lianlian Jiang
- School of Public Health, Nantong University, Nantong, P. R. China
| | - Lianglin Qiu
- School of Public Health, Nantong University, Nantong, P. R. China
| |
Collapse
|
5
|
Goodarzi B, Azimi Mohammadabadi M, Jafari AJ, Gholami M, Kermani M, Assarehzadegan MA, Shahsavani A. Investigating PM 2.5 toxicity in highly polluted urban and industrial areas in the Middle East: human health risk assessment and spatial distribution. Sci Rep 2023; 13:17858. [PMID: 37857811 PMCID: PMC10587072 DOI: 10.1038/s41598-023-45052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023] Open
Abstract
Exposure to particulate matter (PM) can be considered as a factor affecting human health. The aim of this study was to investigate the concentration of PM2.5 and heavy metals and their influence on survival of A549 human lung cells in exposure to PM2.5 breathing air of Ahvaz city. In order to assess the levels of PM2.5 and heavy metals, air samples were collected from 14 sampling stations positioned across Ahvaz city during both winter and summer seasons. The concentration of heavy metals was determined using ICP OES. Next, the MTT assay [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] was employed to ascertain the survival rate of A549 cells. The findings from this research demonstrated that average PM2.5 of the study period was (149.5 μg/m3). Also, the average concentration of PM2.5 in the urban area in winter and summer was (153.3- and 106.9 μg/m3) and in the industrial area this parameter was (191.6 and 158.3 μg/m3). The average concentration of metals (ng/m3) of urban areas against industrial, Al (493 vs. 485), Fe (536 vs. 612), Cu (198 vs. 212), Ni (128 vs. 129), Cr (48.5 vs. 54), Cd (118 vs. 124), Mn (120 vs. 119), As (51 vs. 67), Hg (37 vs. 50), Zn (302 vs. 332) and Pb (266 vs. 351) were obtained. The results of the MTT assay showed that the highest percentage of cell survival according to the exposure concentration was 25 > 50 > 100 > 200. Also, the lowest percentage of survival (58.8%) was observed in the winter season and in industrial areas with a concentration of 200 μg/ml. The carcinogenic risk assessment of heavy metals indicated that except for Cr, whose carcinogenicity was 1.32E-03, other metals were in the safe range (10-4-10-6) for human health. The high concentration of PM2.5 and heavy metals can increase respiratory and cardiovascular diseases and reduce the public health level of Ahvaz citizens.
Collapse
Affiliation(s)
- Babak Goodarzi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Maryam Azimi Mohammadabadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Hu R, Molibeli KM, Zhu L, Li H, Chen C, Wang Y, Xiong D, Liu J, Tang L. Long non-coding RNA-XLOC_002383 enhances the inhibitory effects of THP-1 macrophages on Mycobacterium avium and functions as a competing endogenous RNA by sponging miR-146a-5p to target TRAF6. Microbes Infect 2023; 25:105175. [PMID: 37392988 DOI: 10.1016/j.micinf.2023.105175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/30/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
The morbidity associated with infection by Mycobacterium avium (M. avium), a type of non-tuberculous mycobacteria (NTM), has increased in recent years due to infections that are easily missed, and thus, difficult to diagnose and treat. Here, we reported that miR-146a-5p was highly expressed, and XLOC_002383 and TRAF6 were downregulated in a time- and MOI-dependent manner in THP-1 macrophages infected with M. avium. In macrophages obtained from peripheral blood mononuclear cells, the expression levels of XLOC_002383 and TRAF6 were also decreased, and miR-146a-5p expression was increased following 24 h of infection with M. avium. miR-146a-5p was a target of XLOC_002383 and TRAF6 mRNA was a target of miR-146a-5p, and XLOC_002383 regulated TRAF6 expression by adsorbing miR-146a-5p, and further increased IL-6, TNF-α, IL-1β and iNOS levels in THP-1 macrophages. The results of qPCR and CFU assays indicated that XLOC_002383 decreased the intracellular M. avium loads. Overall, the present study demonstrated that XLOC_002383 may function as a competing endogenous RNA and interacts with miR-146a-5p to increase THP-1 macrophage inflammatory factors and microbicidal mediators iNOS. This enhanced the inhibitory effects of THP-1 macrophages on M. avium, which improved the understanding of the pathogenesis and host defenses in the process of NTM infectious diseases.
Collapse
Affiliation(s)
- Rong Hu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| | - Kearabetsoe Matseliso Molibeli
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| | - Lin Zhu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| | - Hui Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| | - Cai Chen
- Changsha KingMed Center for Clinical Laboratory, Changsha, Hunan, 410100, China.
| | - Yang Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| | - Dehui Xiong
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| | - Jing Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| | - Lijun Tang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| |
Collapse
|
7
|
Aghaei-Zarch SM, Alipourfard I, Rasoulzadeh H, Najafi S, Aghaei-Zarch F, Partov S, Movafagh A, Jahanara A, Toolabi A, Sheikhmohammadi A, Pour NN, Neghad SK, Ashrafi-Asgarabad A. Non-coding RNAs: An emerging player in particulate matter 2.5-mediated toxicity. Int J Biol Macromol 2023; 235:123790. [PMID: 36822288 DOI: 10.1016/j.ijbiomac.2023.123790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Exposure to air pollution has been connected to around seven million early deaths annually and also contributing to higher than 3 % of disability-adjusted lost life years. Particulate matters (PM) are among the key pollutants that directly discharged or formed due to atmospheric chemical interactions. Among these matters, due of its large surface area, PM2.5 may absorb a different harmful and toxic substances. One of the outcomes of such environmental disturbance is oxidative stress which affects cellular processes including apoptosis, inflammation, and epithelial mesenchymal transition. Non-coding RNAs (ncRNA) such as, miRNAs, lncRNAs, and circRNAs are classified as non-protein coding RNA's. Over the past few years these small molecules have been gaining so much attention since they participate in variety of physiological and pathological processes and their expression change during disease periods. Regarding epigenetic properties, ncRNAs play an important function in organism's response to environmental stimulus. In this manner, it was revealed that exposure to PM2.5 may cause epigenetic reprogramming, such as, ncRNAs signature's alteration, which can be effective concerning pathophysiology state. In this review, we describe PM2.5 impact on ncRNAs and excavate its roles in toxicity caused by PM2.5.
Collapse
Affiliation(s)
- Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Hassan Rasoulzadeh
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saber Partov
- Department of Clinical and Biological Sciences, Faculty of Medicine and Surgery, University of Turin, Turin, Italy
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Jahanara
- Neonatology, Bam University of Medical Sciences, Bam, Iran
| | - Ali Toolabi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Amir Sheikhmohammadi
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran
| | | | | | - Ahad Ashrafi-Asgarabad
- Department of Epidemiology, School of Health, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
8
|
Basri R, Awan FM, Yang BB, Awan UA, Obaid A, Naz A, Ikram A, Khan S, Haq IU, Khan SN, Aqeel MB. Brain-protective mechanisms of autophagy associated circRNAs: Kick starting self-cleaning mode in brain cells via circRNAs as a potential therapeutic approach for neurodegenerative diseases. Front Mol Neurosci 2023; 15:1078441. [PMID: 36727091 PMCID: PMC9885805 DOI: 10.3389/fnmol.2022.1078441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
Altered autophagy is a hallmark of neurodegeneration but how autophagy is regulated in the brain and dysfunctional autophagy leads to neuronal death has remained cryptic. Being a key cellular waste-recycling and housekeeping system, autophagy is implicated in a range of brain disorders and altering autophagy flux could be an effective therapeutic strategy and has the potential for clinical applications down the road. Tight regulation of proteins and organelles in order to meet the needs of complex neuronal physiology suggests that there is distinct regulatory pattern of neuronal autophagy as compared to non-neuronal cells and nervous system might have its own separate regulator of autophagy. Evidence has shown that circRNAs participates in the biological processes of autophagosome assembly. The regulatory networks between circRNAs, autophagy, and neurodegeneration remains unknown and warrants further investigation. Understanding the interplay between autophagy, circRNAs and neurodegeneration requires a knowledge of the multiple steps and regulatory interactions involved in the autophagy pathway which might provide a valuable resource for the diagnosis and therapy of neurodegenerative diseases. In this review, we aimed to summarize the latest studies on the role of brain-protective mechanisms of autophagy associated circRNAs in neurodegenerative diseases (including Alzheimer's disease, Parkinson's disease, Huntington's disease, Spinal Muscular Atrophy, Amyotrophic Lateral Sclerosis, and Friedreich's ataxia) and how this knowledge can be leveraged for the development of novel therapeutics against them. Autophagy stimulation might be potential one-size-fits-all therapy for neurodegenerative disease as per considerable body of evidence, therefore future research on brain-protective mechanisms of autophagy associated circRNAs will illuminate an important feature of nervous system biology and will open the door to new approaches for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Rabea Basri
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan,*Correspondence: Faryal Mehwish Awan, ✉ ;
| | - Burton B. Yang
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Usman Ayub Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Suliman Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Ijaz ul Haq
- Department of Public Health and Nutrition, The University of Haripur (UOH), Haripur, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Muslim Bin Aqeel
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| |
Collapse
|
9
|
Shang Y, Xue W, Kong J, Chen Y, Qiu X, An X, Li Y, Wang H, An J. Ultrafine black carbon caused mitochondrial oxidative stress, mitochondrial dysfunction and mitophagy in SH-SY5Y cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151899. [PMID: 34838543 DOI: 10.1016/j.scitotenv.2021.151899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/02/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Exposure to ambient ultrafine black carbon (uBC, with aerodynamic diameter less than 100 nm) is associated with many neurodegenerative diseases. Oxidative stress is the predominantly reported neurotoxic effects caused by uBC exposure. Mitochondrion is responsible for production of majority of ROS in cells and mitochondrial dysfunction is closely related to adverse nervous outcomes. Mitophagy is an important cellular process to eliminate dysfunctional or damaged mitochondria. However, the mechanisms that modulate mitophagy and mitochondrial dysfunction initiated by uBC remain to be elucidated. The purpose of this study was to investigate how mitochondrial oxidative stress regulated mitochondrial dysfunction and mitophagy in human neuroblastoma cell line (SH-SY5Y) after uBC treatment. RNA interference was further applied to explore the roles of mitophagy in mitochondrial dysfunction. We found uBC triggered cell apoptosis via ROS-mitochondrial apoptotic pathway. The uBC also caused serious mitochondrial damage and respiratory dysfunction, indicated by the abnormalities in mitochondrial division and fusion related proteins, decreased mitochondria number and ATP level. Increased PTEN induced putative kinase 1 (PINK1) and Parkin protein levels and the autolysosome numbers suggested uBC could promote Pink1/Parkin-dependent mitophagy process in SH-SY5Y cells. Mitophagy inhibition could reserve mitochondria number and ATP activity, but not fusion and division related protein levels in SH-SY5Y cells exposed to uBC. Administration of a mitochondria-targeted antioxidant (mitoquinone) significantly eliminated uBC caused apoptosis, mitochondrial dysfunction and mitophagy. Our data suggested mitochondrial oxidative stress regulated uBC induced mitochondrial dysfunction and PINK1/Parkin-dependent mitophagy. PINK1/Parkin-dependent mitophagy probably participated in regulating uBC caused mitochondrial dysfunction but not by controlling mitochondrial fusion and division related proteins. Our results may provide some new insights and evidences to understand the mechanisms of neurotoxicity induced by uBC.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Wanlei Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiexing Kong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xingqin An
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yi Li
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
10
|
Li J, Zhang L, Wang J, Jia R, Zhang X, Li X, Fu Y, Song L. Differential expression of long non-coding RNAs in the hippocampus of mice exposed to PM 2.5 in Dalian, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12136-12146. [PMID: 34561797 DOI: 10.1007/s11356-021-16496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Evidence is mounting that PM2.5 exposure could lead to learning disability, memory deficits, and cognitive impairment; however, the underlying mechanisms are still not well demonstrated yet. Long non-coding RNAs (LncRNAs) play a crucial role in many human diseases. Although the relationship of Alzheimer's disease (AD) and lncRNAs have been discovered, the role of lncRNA in AD-like phenotype induced by PM2.5 needs further exploration. In this study, we profiled the expression of messenger RNAs (mRNAs) and lncRNAs in hippocampus after confirming the AD-like changes in mice. Compared with the control group, a total of 478 mRNAs and 151 lncRNAs were dysregulated after PM2.5 exposure. ECM-receptor interaction, focal adhesion, complement and coagulation cascades, and AGE-RAGE signaling pathway were found dysregulated through lncRNA-co-expressed genes analysis based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Meanwhile, the genes related to microglia were significantly altered, such as CX3CR1, CD163, lncRNA Gm44750, and lncRNA Gm43509. Above evidences suggested that microglia-related lncRNAs dysregulation probably plays a crucial role in PM2.5exposure-associated learning and memory deficits.
Collapse
Affiliation(s)
- Jie Li
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Longying Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, People's Republic of China
| | - Jiaqi Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
- The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Ruxue Jia
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Xiao Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Xiaojing Li
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Ying Fu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Laiyu Song
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China.
| |
Collapse
|
11
|
An J, Tang W, Wang L, Xue W, Yao W, Zhong Y, Qiu X, Li Y, Chen Y, Wang H, Shang Y. Transcriptomics changes and the candidate pathway in human macrophages induced by different PM 2.5 extracts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117890. [PMID: 34358868 DOI: 10.1016/j.envpol.2021.117890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Ambient fine particulate matter (PM2.5) is a worldwide environmental problem and is posing a serious threat to human health. Until now, the molecular toxicological mechanisms and the crucial toxic components of PM2.5 remain to be clarified. This study investigated the whole transcriptomic changes in THP-1 derived macrophages treated with different types of PM2.5 extracts using RNA sequencing technique. Bioinformatics analyses covering biological functions, signal pathways, protein networks and node genes were performed to explore the candidate pathways and critical genes, and to find the potential molecular mechanisms. Results of Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), and protein-protein interaction (PPI) networks revealed that water extracts (WEs) of PM2.5 obviously influenced genes and molecular pathways responded to oxidative stress and inflammation. Dichloromethane extracts (DEs) specifically affected genes and signal cascades related to cell cycle progress process. Furthermore, compared with WEs collected in heating season, non-heating season WEs induced much higher expression levels of Ca-associated genes (including phosphodiesterase 4B and cyclooxygenase-2), which may consequently result in more severe inflammatory responses. While, for DEs exposure, the heating season (DH) group showed extensive induction of deferentially expressed genes (DEGs) related to cell cycle pathway, which may be caused by the higher polycyclic aromatic hydrocarbons (PAHs) contents in DH samples than those from non-heating season. In conclusion, the oxidative stress and inflammation response are closely correlated with cellular responses in THP-1 derived macrophages induced by water soluble components of PM2.5, and cell cycle dysregulation may play an important role in biological effects induced by organic components. The different transcriptomic changes induced by seasonal PM2.5 extracts may partially depend on the contents of PAHs and metal ions, respectively.
Collapse
Affiliation(s)
- Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Waner Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Lu Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wanlei Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Weiwei Yao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yi Li
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai, 200233, China
| | - Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai, 200233, China.
| |
Collapse
|
12
|
Roy SG. Regulation of autophagy by miRNAs in human diseases. ACTA ACUST UNITED AC 2021; 64:317-329. [PMID: 34690368 PMCID: PMC8520464 DOI: 10.1007/s13237-021-00378-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022]
Abstract
Autophagy is a homeostatic process designed to eliminate dysfunctional and aging organelles and misfolded proteins through a well-concerted pathway, starting with forming a double-membrane vesicle and culminating in the lysosomal degradation of the cargo enclosed inside the mature vesicle. As a vital sentry of cellular health, autophagy is regulated in every human disease condition and is an essential target for non-coding RNAs like microRNAs (miRNAs). miRNAs are short oligonucleotides that specifically bind to the 3'-untranslated region (UTR) of target mRNAs, thus leading to mRNA silencing, degradation, or translation blockage. This review summarizes the recent findings regarding the regulation of autophagy and autophagy-related genes by different miRNAs in various pathological conditions, including cancer, kidney and liver disorders, neurodegeneration, cardiovascular disorders, infectious diseases, aging-related conditions, and inflammation-related diseases. As miRNAs are being identified as prime regulators of autophagy in human disease, pharmacological molecules and traditional medicines targeting these miRNAs are also being tested in disease models, thus initiating a new series of therapeutic interventions targeting autophagy.
Collapse
Affiliation(s)
- Sounak Ghosh Roy
- Department of Internal Medicine – Nephrology, Yale School of Medicine, New Haven, CT USA
| |
Collapse
|
13
|
Lu J, Wang X, Zhang B, Li P, Du X, Qi F. The lncRNA PVT1 regulates autophagy in regulatory T cells to suppress heart transplant rejection in mice by targeting miR-146a. Cell Immunol 2021; 367:104400. [PMID: 34214903 DOI: 10.1016/j.cellimm.2021.104400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
Regulatory T cells (Tregs) are indispensable for the maintenance of immune tolerance. The purpose of this study was to investigate the effect of the interaction of the lncRNA PVT1 and miR-146a on Treg autophagy and reveal the mechanism to alleviate transplant rejection. PVT1 and miR-146a expression levels were analyzed by qRT-PCR. Bioinformatic analysis and methylation profiling were used to determine the relationship between PVT1 and miR-146a. Altered autophagic status in Tregs was detected by western blotting. The effect of autophagy on Treg function was assessed in cell coculture in vitro and in animal models. Our results showed that PVT1 expression was reduced in Tregs during rejection and negatively correlated with miR-146a expression. Higher PVT1 expression was associated with higher autophagy in Tregs. Further, highly autophagic Tregs had stronger inhibitory effects on CD4+ T cells in vitro, prolonged allograft survival and alleviated rejection in vivo. Mechanistic studies showed that overexpression of PVT1 enhanced TNF receptor-associated factor (TRAF) 6 expression by directly targeting miR-146a. MiR-146a overexpression reversed PVT1-induced Treg autophagy and inhibited PVT1-induced TRAF6 expression. The present study shows a novel regulatory pathway of the autophagy program that comprises PVT1, miR-146a, and TRAF6. Our findings may provide potential targets and new therapeutic strategies for transplant rejection.
Collapse
Affiliation(s)
- Jian Lu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, China.
| | - Xiaodong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310003, China.
| | - Baotong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Xuezhi Du
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|
14
|
Bone marrow mesenchymal stem cell-derived exosomes induce the Th17/Treg imbalance in immune thrombocytopenia through miR-146a-5p/IRAK1 axis. Hum Cell 2021; 34:1360-1374. [PMID: 34052997 DOI: 10.1007/s13577-021-00547-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are associated with immune thrombocytopenia (ITP), the underlying mechanism has not been fully elucidated. Here, we attempted to investigate whether BMSCs can regulate Th17/Treg imbalance in ITP through the exosome pathway. We first assessed the proportions of Th17 cells and Tregs in ITP patients, showing that ITP patients exhibited an evident imbalance of Th17/Treg. BMSCs-exosomes' treatment significantly reduced Th17/Treg ratio in the CD4+ T cells of ITP patients. Moreover, miR-146a-5p was highly expressed in BMSCs-exosomes. The expression of miR-146a-5p was obviously increased in CD4+ T cells following the treatment of BMSCs-exosomes. BMSCs-exosomal miR-146a-5p silencing promoted the proportions of Th17 cells and repressed the proportions of Tregs in CD4+ T cells. In addition, miR-146a-5p directly interacted with IL-1R-associated kinase-1 (IRAK), and repressed IRAK1 expression. IRAK1 overexpression promoted Th17/Treg ratio in CD4+ T cells, which was abolished by BMSCs-exosomal miR-146a-5p. In conclusion, these findings demonstrate that BMSC-derived exosomal miR-146a-5p regulates Th17/Treg imbalance in ITP by repressing IRAK1 expression. Thus, this work suggests that BMSCs-exosomal miR-146a-5p may be a potential therapeutic target for ITP.
Collapse
|
15
|
Lu J, Liu Y, Wang W, Li P, Qi F. Knockdown of miR-146a in regulatory T cells suppresses heart transplantation rejection in mice by increasing autophagy. Transpl Immunol 2021; 65:101372. [PMID: 33581286 DOI: 10.1016/j.trim.2021.101372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 01/10/2023]
Abstract
Clinical trials of regulatory T cells (Tregs) have shown that adoptive transfer of Tregs has great promise for the treatment of rejection. However, strategies to improve Treg function are needed in order to enhance their efficacy and reduce the number of Tregs required for adoptive transfer. Autophagy is a process for degrading intracellular components, and it mediates cell death, lymphocyte homeostasis, and Treg function. Studies have shown that the survival and function of Tregs with disrupted autophagy are defective. We found that the autophagic status of Tregs was compromised during acute rejection, allowing us to enhance Treg autophagy by regulating microRNA-146a (miR-146a), which is highly expressed in Tregs and is implicated in their function and metabolism. MiR-146a antagomir-mediated miR-146a knockdown promoted Treg autophagy, as evaluated by Western blot analysis. Further, we evaluated whether altering autophagy affects Treg function in both an in vitro cell coculture model and a heart transplantation model in mice. An increase in autophagy enhanced the inhibitory effects of Tregs on CD4+ T cells and dendritic cells (DCs) in vivo and in vitro. In addition, adoptive transfer of highly autophagic Tregs treated with miR-146a antagomir significantly alleviated rejection. Collectively, these data provide a new method that uses miR-146a knockdown to increase Treg efficacy by increasing autophagy.
Collapse
Affiliation(s)
- Jian Lu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Yanhong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Weiwei Wang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Department of General Surgery, Tianjin Medical University Baodi Clinical College, No. 8, Guangchuan Road, Baodi District, Tianjin 301800, China
| | - Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|