1
|
Santos E, Pires FR, Souza IM, Sousa Duque T, da Silva Coelho I, Ferreira Santaren KC, Egreja Filho FB, Bonomo R, Duim Ferreira A, Viana DG, Santos JBD. Rhizosphere-associated microbiota of Canavalia ensiformis in sulfentrazone bioremediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2175-2182. [PMID: 39010720 DOI: 10.1080/15226514.2024.2379603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The objective of this study was to determine the efficiency of the microbial rhizosphere (Canavalia ensiformis) in the phytoremediation of sulfentrazone using quantification methods (CO2 evolution, microbial biomass carbon, and metabolic quotient) and identification of bacteria (PCR-DGGE technique). The experiment was conducted in a completely randomized design, in a 2x4 factorial scheme, with four replications. The treatments were composed of rhizospheric soil (cultivated with C. ensiformis) and non-rhizosphere soil (uncultivated soil); and four levels of contamination by sulfentrazone (0, 200, 400, and 800 g ha-1 a.i.). The microbiota associated with the rhizosphere of C. ensiformis efficiently reduced sulfentrazone residues in the soil, with better performance at the dose of 200 g ha-1 a.i. Using the PCR-DGGE technique allowed the distinction of two profiles of bacteria in the rhizospheric activity of C. ensiformis. The second bacterial profile formed was more efficient in decontaminating soil contaminated with sulfentrazone residue. The microbiota associated with the rhizosphere of C. ensiformis has an efficient profile in decontaminating soils with residues equivalent to 200 g ha-1 a.i. the herbicide sulfentrazone.
Collapse
Affiliation(s)
- Esequiel Santos
- Department of Biological and Agriculture Science, Federal University of Espírito Santo, São Mateus, ES, Brazil
| | - Fábio Ribeiro Pires
- Department of Biological and Agriculture Science, Federal University of Espírito Santo, São Mateus, ES, Brazil
| | - Iasmim Marcella Souza
- Department of Agronomy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Tayna Sousa Duque
- Department of Agronomy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | | | | | - Fernando Barboza Egreja Filho
- Departament of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Robson Bonomo
- Department of Biological and Agriculture Science, Federal University of Espírito Santo, São Mateus, ES, Brazil
| | - Amanda Duim Ferreira
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Douglas Gomes Viana
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - José Barbosa Dos Santos
- Department of Agronomy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
2
|
Hou T, Liu J, Yao Y, Chen K, Mao C, Zhang J, Li Z, Zhang K, Yang P. Regulation and microbial response mechanism of nitric oxide to copper-containing swine wastewater treated by Pistia stratiotes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124560. [PMID: 39019313 DOI: 10.1016/j.envpol.2024.124560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
As a signaling molecule, Nitric oxide (NO) has been widely used in abiotic stress mitigation studies.Pistia stratiotes showed a good synergistic removal effect on heavy metals, nitrogen and phosphorus, but the high concentration of copper(Cu) in swine wastewater inhibited the comprehensive removal ability of Pistia stratiotes. At present, it is not clear how the addition of NO regulates the stress resistance mechanism of Pistia stratiotes to copper in swine wastewater, and the microbial response mechanism accompanying this process is not yet clear. Therefore, in the concentration range of 0.31∼4 mg·L-1Cu2+ and NO concentration of 0,0.05 and 0.1 mg L-1, the removal effect of Pistia stratiotes on copper from swine wastewater was studied. The results showed as follows: The treatment of non-available copper in groups M and H increased by 10.67% and 22.31%, respectively, compared with that in group L. The critical point of inhibiting effect of NO on growth rate was 2.03 mg·L-1Cu. By measuring three-dimensional fluorescence spectrum, combined with parallel factor analysis and principal component analysis, it was confirmed that exogenous addition of NO affected the humification degree of dissolved organic matter(DOM) and promoted the chelation of organic matter with copper. With the increase of Cu concentration, the Reyranella and Prosthecobacter with certain copper resistance gradually gained advantages. Redundancy analysis(RDA) showed that Emiticicia had a strong correlation with the removal rates of ammonia nitrogen, total phosphorus and copper in swine wastewater, while hgcI_clade had a strong correlation with the removal rates of total nitrogen. In conclusion, controlling the dosage of NO can effectively improve the tolerance and removal effect of Pistia stratiotes on copper in swine wastewater, which is of great significance for promoting the treatment and resource transformation of swine wastewater.
Collapse
Affiliation(s)
- Tianbao Hou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jiahua Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yanpo Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Kecheng Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Chunchun Mao
- Ningxia Hui Autonomous Region Animal Husbandry Workstation, Ningxia, 750000, China
| | - Jingwen Zhang
- Ningxia Hui Autonomous Region Animal Husbandry Workstation, Ningxia, 750000, China
| | - Zhucheng Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Peng Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
3
|
Wang P, Chen C, Zheng R, Peng L, Zhou Z, Wang Q. Complexity of influences on atrazine phytoremediation of coexisting graphene oxide in water: Mitigating its phytotoxicity while decreasing plant removal contribution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122807. [PMID: 39368390 DOI: 10.1016/j.jenvman.2024.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Phytoremediation is an efficient technology for the removal of herbicide atrazine (ATZ) contamination in water bodies, but its ability to reduce ATZ under combined pollution remains unclear, especially ATZ co-existing with the emerging pollutant graphene oxide (GO) that may have potential effects on ATZ fate, plants and microbes. Herein, we investigated the phytoremediation potential of an emergent plant (Iris pseudacorus) for ATZ and the response of bacteria in a hydroponic system with and without GO. The results showed that plants enhanced ATZ dissipation in water with the increased removal rate by a factor of 1.7-4.0. GO restricted ATZ uptake by plants, but favored ATZ bioconcentration in cell walls. The plant contributed most to changes in the bacterial communities, decreasing the alpha diversity, while enriching the functional categories involving in amino acid and carbohydrate metabolisms. These findings indicated that I. pseudacorus can be employed as an effective candidate of phytoremediation for ATZ co-existing with GO at environmentally relevant concentrations, tending to recruit bacteria with plant stress tolerance and growth-promotion activities more than with ATZ degradation activities; GO exerted a mitigating effect on ATZ stress improving the barrier function of cell walls, but decreased the contribution of plants to ATZ removal.
Collapse
Affiliation(s)
- Peixin Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chuansheng Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ruilun Zheng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lei Peng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zixin Zhou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Qinghai Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
4
|
Touzout N, Mihoub A, Ahmad I, Jamal A, Danish S. Deciphering the role of nitric oxide in mitigation of systemic fungicide induced growth inhibition and oxidative damage in wheat. CHEMOSPHERE 2024; 364:143046. [PMID: 39117087 DOI: 10.1016/j.chemosphere.2024.143046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
Consento (CON) poses a significant environmental hazard as a systemic fungicide, adversely affecting the health of non-target organisms. Nitric oxide (NO), a signaling molecule, is known to play a crucial role in plant physiology and abiotic stress tolerance. However, whether NO plays any role to enhance fungicide CON tolerance in wheat seedlings is yet unclear. Therefore, we conducted a hydroponic experiment i) to investigate the morpho-physio-biochemical changes of wheat seedlings to fungicide CON stress, and ii) to examine the effects of NO and fungicide CON treatments on oxidative damage, antioxidant system, secondary metabolism and detoxification of systemic fungicide in wheat seedlings. The results showed that CON fungicide at the highest (4X) concentration significantly decreased wheat seedlings fresh weight (46.89%), shoot length (40.26%), root length (56.11%) and total chlorophyll contents (67.44%) in a dose response relationship. Moreover, CON significantly increased hydrogen peroxide, malondialdehyde, catalase, ascorbate peroxidase, glutathione-S-transferase, and peroxidase activities while decreased reduced glutathione (GSH) content. This ultimately impaired the redox homeostasis of cells, leading to oxidative damage in cell membrane. Under fungicide treatment, the addition of NO reduced the fungicide phytotoxicity, with an increase of over 60% in seedling growth. The NO application mitigated CON phytotoxicity as reflected by significantly increased chlorophyll pigments (69.88%) and decreased oxidative damage in wheat leaves. Indeed, the NO alleviatory effect was able to increase the tolerance of seedlings to fungicide, which resulted increments in antioxidant and detoxification enzymes activity, with the enhanced GSH level (78.54%). Interestingly, NO alleviated CON phytotoxicity through the phenylpropanoid pathway by enhancing the activity of secondary metabolism enzymes such as phenylalanine ammonia-lyase (47.28%), polyphenol oxidase (9%), and associated metabolites such as phenolic acids (77.62%), flavonoids (34.33%) in wheat leaves. Our study has provided evidence that NO plays a key role in the metabolism and detoxification of systemic fungicide in wheat through enhanced activity of antioxidants, detoxifications and secondary metabolic enzymes.
Collapse
Affiliation(s)
- Nabil Touzout
- Department of Nature and Life Sciences, Faculty of Sciences, Pole Urban Ouzera, University of Medea, Medea, 26000, Algeria
| | - Adil Mihoub
- Biophysical Environment Station, Center for Scientific and Technical Research on Arid Regions, Touggourt, Algeria
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Aftab Jamal
- Department of Soil and Environmental Sciences, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60000, Punjab, Pakistan; Pesticide Quality Control Laboratory, Agriculture Complex, Old Shujabad Road, Multan, 60000, Punjab, Pakistan
| |
Collapse
|
5
|
Nogueira Neto FA, Freitas Souza MD, Blat NR, da Silva FD, Fernandes BCC, das Chagas PSF, Araujo PCD, Lins HA, Silva DV. Sensitivity and antioxidant response of forest species seedlings to the atrazine under simulated conditions of subsurface water contamination. CHEMOSPHERE 2024; 360:142411. [PMID: 38789050 DOI: 10.1016/j.chemosphere.2024.142411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Atrazine is an herbicide with a high soil leaching capacity, contaminating subsurface water sources. Once the water table is contaminated, riparian species can be exposed to atrazine. In this way, understanding the impacts of this exposure must be evaluated for planning strategies that minimize the effects of this herbicide on native forest species. We aimed to evaluate forest species' sensitivity and antioxidant response to exposure to subsurface waters contaminated with atrazine, as well the dissipation this herbicide. The experiment was conducted in a greenhouse in a completely randomized design, with three replications and one plant per experimental unit. The treatments were arranged in a 2 × 10 factorial. The first factor corresponded to the presence or absence (control) of the atrazine in the subsurface water. The second factor comprised 10 forest species: Amburana cearensis, Anadenanthera macrocarpa, Bauhinia cheilantha, Enterolobium contortisiliquum, Hymenaea courbaril, Libidibia ferrea, Mimosa caesalpiniifolia, Mimosa tenuiflora, Myracrodruon urundeuva, and Tabebuia aurea. The forest species studied showed different sensitivity levels to atrazine in subsurface water. A. cearensis and B. cheilantha species do not have efficient antioxidant systems to prevent severe oxidative damage. The species A. macrocarpa, E. contortisiliquum, L. ferrea, and M. caesalpiniifolia are moderately affected by atrazine. H. courbaril, M. urundeuva, and T. aurea showed greater tolerance to atrazine due to the action of the antioxidant system of these species, avoiding membrane degradation events linked to the production of reactive oxygen species (ROS). Among the forest species, H. courbaril has the most significant remedial potential due to its greater tolerance and reduced atrazine concentrations in the soil.
Collapse
Affiliation(s)
| | | | | | - Francisca Daniele da Silva
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil
| | | | | | | | - Hamurábi Anizio Lins
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil.
| | - Daniel Valadão Silva
- Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil
| |
Collapse
|
6
|
Li L, Wang Y, Liu L, Gao C, Ru S, Yang L. Occurrence, ecological risk, and advanced removal methods of herbicides in waters: a timely review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3297-3319. [PMID: 38095790 DOI: 10.1007/s11356-023-31067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/12/2023] [Indexed: 01/19/2024]
Abstract
Coastal pollution caused by the importation of agricultural herbicides is one of the main environmental problems that directly affect the coastal primary productivity and even the safety of human seafood. It is urgent to evaluate the ecological risk objectively and explore feasible removal strategies. However, existing studies focus on the runoff distribution and risk assessment of specific herbicides in specific areas, and compared with soil environment, there are few studies on remediation methods for water environment. Therefore, we systematically reviewed the current situation of herbicide pollution in global coastal waters and the dose-response relationships of various herbicides on phytoplankton and higher trophic organisms from the perspective of ecological risks. In addition, we believe that compared with the traditional single physical and chemical remediation methods, biological remediation and its combined technology are the most promising methods for herbicide pollution remediation currently. Therefore, we focus on the application prospects, challenges, and management strategies of new bioremediation systems related to biology, such as constructed wetlands, membrane bioreactor processes, and microbial co-metabolism, in order to provide more advanced methods for reducing herbicide pollution in the water environment.
Collapse
Affiliation(s)
- Lingxiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunsheng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lijuan Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Chen Gao
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liqiang Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Gomes AR, Freitas ÍN, Luz TMD, Guimarães ATB, Araújo APDC, Kamaraj C, Rahman MM, Islam ARMT, Arias AH, Silva FBD, Karthi S, Cruz-Santiago O, Silva FG, Malafaia G. Multiple endpoints of polyethylene microplastics toxicity in vascular plants of freshwater ecosystems: A study involving Salvinia auriculata (Salviniaceae). JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131069. [PMID: 36857830 DOI: 10.1016/j.jhazmat.2023.131069] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
More recently, the number of studies on the impacts of microplastics (MPs) on plants has drawn attention considerably. However, many of these studies focused on terrestrial plants, with vascular plants from freshwater ecosystems being little studied. Thus, we aimed to evaluate the possible effects of exposure of Salvinia auriculata, for 28 days, to different concentrations of polyethylene MPs (PE MPs - diameter: 35.46 ± 18.17 µm) (2.7 ×108 and 8.1 ×108 particles/m3), using different biomarkers. Our data indicated that exposure to PE MPs caused alterations in plant growth/development (inferred by the lower floating frond number, "root" length, and the number of "roots"), as well as lower dispersion of individuals in the experimental units. Plants exposed to PE MPs also showed lower epidermal thickness (abaxial leaf face) and a longer length of the central leaf vein and vascular bundle area. Ultrastructural analyses of S. auriculata exposed to MPs revealed rupture of some epidermal cells and trichomes on the adaxial and abaxial, leaf necrosis, and chlorosis. In the "roots", we observed dehydrated filamentous structures with evident deformations in plants exposed to the pollutants. Both on the abaxial leaf face and on the "roots", the adherence of PE MPs was observed. Furthermore, exposure to PE MPs induced lower chlorophyll content, cell membrane damage, and redox imbalance, marked by reduced catalase and superoxide dismutase activity and increased production of reactive oxygen and nitrogen species as well as malondialdehyde. However, in general, we did not observe the dose-response effect for the evaluated biomarkers. The values of the integrated biomarker response index, the principal component analysis (PCA) results and the hierarchical clustering analysis confirmed the similarity between the responses of plants exposed to different PE MPs concentrations. Therefore, our study sheds light on how PE MPs can affect S. auriculata and reinforces that putting these pollutants in freshwater environments might be hazardous from an ecotoxicological point of view.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Agronomy, Goiano Federal Institute, Rio Verde, GO, Brazil
| | - Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | | | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | | | - Andrés Hugo Arias
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida 8000, Complejo CCT CONICET Bahía Blanca, Bahía Blanca, Argentina
| | - Fábia Barbosa da Silva
- Laboratory of Tissue Culture, Goiano Federal Institute, Rio Verde, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India
| | - Omar Cruz-Santiago
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales (PMPCA), Agenda Ambiental, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 201, Zona Universitaria, 78210 San Luis Potosí, Mexico
| | - Fabiano Guimarães Silva
- Post-Graduation Program in Agronomy, Goiano Federal Institute, Rio Verde, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Programa Multidisciplinario de Posgrado en Ciencias Ambientales (PMPCA), Agenda Ambiental, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 201, Zona Universitaria, 78210 San Luis Potosí, Mexico; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
8
|
Cabral CM, Souza MDF, Alencar BTB, Ferreira EA, Silva DV, Reginaldo LTRT, Dos Santos JB. Sensibility, multiple tolerance and degradation capacity of forest species to sequential contamination of herbicides in groundwaters. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130914. [PMID: 36758438 DOI: 10.1016/j.jhazmat.2023.130914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Herbicides have already reported environmental contamination in several countries with intense agricultural activity. The transport of these molecules due to leaching and surface runoff has frequently caused contamination of rivers, groundwater and soil in non-agricultural areas. Thereby, we propose to investigate the sensitivity and phytoremediation capacity of 5 native Cerrado species to sequential exposure to 2,4-D, atrazine, diuron and hexazinone. We hypothesized that species have different sensitivity levels to sequential exposure to these herbicides absorbed from contaminated simulated groundwater model. The objectives of this work were: i) to determine the sensitivity of native cerrado species by sequential exposure to 2,4-D, atrazine, diuron and hexazinone via contaminated simulated groundwater model; ii) to evaluate the presence and degradation capacity of these herbicides in the soil and water leached by tolerant species. Some species showed high phytoremediation potential for groundwater already contaminated with 2,4-D, atrazine, diuron and hexazinone. S. macranthera and C. antiphilitica are tolerant and reduce the concentration of herbicides in simulated groundwater model. Among these species, C. antiphilitica reduces the concentration of all herbicides, suggesting greater adaptability to compose decontamination strategies in areas close to agricultural systems that use 2,4-D herbicides, atrazine, diuron and hexazinone. Also, our results show that herbicides can act as a selection factor for Cerrado forest species, however, two species can mitigate the effects of contamination due to their ability to degrade herbicides.
Collapse
Affiliation(s)
- Cássia Michelle Cabral
- Department of Agronomy, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | | | | | | | | | | | - José Barbosa Dos Santos
- Department of Agronomy, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| |
Collapse
|
9
|
Lu H, Gao W, Deng C, Liu X, Li W, Yu Z, Ding H, Zhang L. Degradation of atrazine in river sediment by dielectric barrier discharge plasma (DBDP) combined with a persulfate (PS) oxidation system: response surface methodology, degradation mechanisms, and pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51303-51313. [PMID: 36809616 DOI: 10.1007/s11356-022-24927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/19/2022] [Indexed: 04/16/2023]
Abstract
Single degradation systems based on dielectric barrier discharge plasma (DBDP) or persulfate (PS) oxidation cannot achieve the desired goals (high degradation efficiency, high mineralization rate, and low product toxicity) of degrading atrazine (ATZ) in river sediment. In this study, DBDP was combined with a PS oxidation system (DBDP/PS synergistic system) to degrade ATZ in river sediment. A Box-Behnken design (BBD) including five factors (discharge voltage, air flow, initial concentration, oxidizer dose, and activator dose) and three levels (- 1, 0, and 1) was established to test a mathematical model by response surface methodology (RSM). The results confirmed that the degradation efficiency of ATZ in river sediment was 96.5% in the DBDP/PS synergistic system after 10 min of degradation. The experimental total organic carbon (TOC) removal efficiency results indicated that 85.3% of ATZ is mineralized into CO2, H2O, and NH4+, which effectively reduces the possible biological toxicity of the intermediate products. Active species (sulfate (SO4•-), hydroxy (•OH), and superoxide (•O2-) radicals) were found to exert positive effects in the DBDP/PS synergistic system and illustrated the degradation mechanism of ATZ. The ATZ degradation pathway, composed of 7 main intermediates, was clarified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS). This study indicates that the DBDP/PS synergistic system is a highly efficient, environmentally friendly, novel method for the remediation of river sediment containing ATZ pollution.
Collapse
Affiliation(s)
- Hongyu Lu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- Heifei Engineering Research Center for Soil and Groundwater Remediation, Hefei, 230088, China
| | - Wei Gao
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
| | - Chengxun Deng
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China.
- Heifei Engineering Research Center for Soil and Groundwater Remediation, Hefei, 230088, China.
| | - Xiaowei Liu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- Heifei Engineering Research Center for Soil and Groundwater Remediation, Hefei, 230088, China
| | - Weiping Li
- Heifei Engineering Research Center for Soil and Groundwater Remediation, Hefei, 230088, China
- Anhui Guozhen Environmental Remediation Co., Ltd, Hefei, 230088, China
| | - Zhimin Yu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- Heifei Engineering Research Center for Soil and Groundwater Remediation, Hefei, 230088, China
| | - Haitao Ding
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
| | - Ling Zhang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- Heifei Engineering Research Center for Soil and Groundwater Remediation, Hefei, 230088, China
| |
Collapse
|
10
|
Wang X, Wang L, Fan J, Ma F. Asymmetric interaction and concurrent remediation of copper and atrazine by Acorus tatarinowii in an aquatic system. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128888. [PMID: 35483262 DOI: 10.1016/j.jhazmat.2022.128888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
To clarify the influence of organic pesticides on phytoremediation of potentially toxic metal elements, hydroponically-grown Acorus tatarinowii was used to repair copper pollution at six concentration levels with and without atrazine. Removal outcomes and processes exhibited asymmetry in an aquatic system. In plants, the addition of atrazine brought as much as 20.5% copper than control. Total amounts, percentage of protein or pectin combined copper and leaf: root ratio of copper were enhanced correspondingly. In solutions, cupric ions (Cu2+) were eliminated as much as 95.6% in plant remediation system. Though atrazine resulted in a quarter more absorption equilibrium concentration, the absorption reaction rate half declined. Copper removal in the system was contributed by both bound copper in solution and plant accumulation, and atrazine magnified contribution weight of the later one. Concurrent copper decreased absolute and relative amounts of atrazine in A. tatarinowii, indicating the influence of copper was mainly to reduce atrazine uptake by A. tatarinowii rather than to change the transformation of atrazine in plants. Copper exhibited antagonistic effects with atrazine in term of plant biomass, photosynthesis and oxidative-related responses (malondialdehyde, Ca, Fe and Mn), which might give support to asymmetry interaction between copper and atrazine accumulation in A. tatarinowii.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, Heilongjiang Province, People's Republic of China
| | - Li Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, Heilongjiang Province, People's Republic of China.
| | - Jiazhi Fan
- Yichun Luming Mining Co.,Ltd, Tieli 152500, Heilongjiang Province, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, Heilongjiang Province, People's Republic of China
| |
Collapse
|
11
|
Emerging Pollutants in Moroccan Wastewater: Occurrence, Impact, and Removal Technologies. J CHEM-NY 2022. [DOI: 10.1155/2022/9727857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The rapid growth of anthropogenic activities in recent decades has resulted in the appearance of numerous new chemical compounds in the environment, known as “emerging pollutants” (EPs) or “contaminants of emerging concern” (CECs). Although partially or not yet regulated or monitored, there is growing research interest in these EPs among the scientific community because of their bioaccumulation, persistence, and adverse effects. Among these, endocrine disruptors, pesticides, and pharmaceuticals can have harmful impacts on human health and the ecosystem. Conventional wastewater treatment technologies are not effective in removing these contaminants, allowing them to be released into the receiving environment. In order to improve the understanding of emerging pollutants, this review discusses the source, occurrence, and impacts of bisphenol A, atrazine, amoxicillin, and paracetamol as model molecules of emerging environmental pollutants, an issue that remains underrepresented in Morocco. Then, treatment methods for EPs are reviewed, including adsorption, advanced oxidation processes, biodegradation, and hybrid treatment. It is proposed that adsorption and photocatalysis can be used as simple, effective, and environmentally friendly technologies for their removal. Thus, we summarize some of the adsorbent and photocatalyst materials applied in recent work to control these pollutants. Towards the end of this paper, the development of inexpensive and locally available (Morocco) materials to remove these compounds from wastewater is considered.
Collapse
|
12
|
Soares C, Rodrigues F, Sousa B, Pinto E, Ferreira IMPLVO, Pereira R, Fidalgo F. Foliar Application of Sodium Nitroprusside Boosts Solanum lycopersicum L. Tolerance to Glyphosate by Preventing Redox Disorders and Stimulating Herbicide Detoxification Pathways. PLANTS 2021; 10:plants10091862. [PMID: 34579395 PMCID: PMC8466062 DOI: 10.3390/plants10091862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 01/24/2023]
Abstract
Strategies to minimize the effects of glyphosate (GLY), the most used herbicide worldwide, on non-target plants need to be developed. In this context, the current study was designed to evaluate the potential of nitric oxide (NO), provided as 200 µM sodium nitroprusside (SNP), to ameliorate GLY (10 mg kg−1 soil) phytotoxicity in tomato plants. Upon herbicide exposure, plant development was majorly inhibited in shoots and roots, followed by a decrease in flowering and fruit set; however, the co-application of NO partially prevented these symptoms, improving plant growth. Concerning redox homeostasis, lipid peroxidation (LP) and reactive oxygen species (ROS) levels rose in response to GLY in shoots of tomato plants, but not in roots. Additionally, GLY induced the overaccumulation of proline and glutathione, and altered ascorbate redox state, but resulted in the inhibition of the antioxidant enzymes. Upon co-treatment with NO, the non-enzymatic antioxidants were not particularly changed, but an upregulation of all antioxidant enzymes was found, which helped to keep ROS and LP under control. Overall, data point towards the benefits of NO against GLY in tomato plants by reducing the oxidative damage and stimulating detoxification pathways, while also preventing GLY-induced impairment of flowering and fruit fresh mass.
Collapse
Affiliation(s)
- Cristiano Soares
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
- Correspondence:
| | - Francisca Rodrigues
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
| | - Bruno Sousa
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
| | - Edgar Pinto
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (E.P.); (I.M.P.L.V.O.F.)
- Department of Environmental Health, School of Health, P.Porto (ESS-P.Porto), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Isabel M. P. L. V. O. Ferreira
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal; (E.P.); (I.M.P.L.V.O.F.)
| | - Ruth Pereira
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
| | - Fernanda Fidalgo
- GreenUPorto—Sustainable Agrifood Production Research Centre & INOV4AGRO, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (F.R.); (B.S.); (R.P.); (F.F.)
| |
Collapse
|
13
|
Nexus between Water Security Framework and Public Health: A Comprehensive Scientific Review. WATER 2021. [DOI: 10.3390/w13101365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water scarcity, together with the projected impacts of water stress worldwide, has led to a rapid increase in research on measuring water security. However, water security has been conceptualized under different perspectives, including various aspects and dimensions. Since public health is also an integral part of water security, it is necessary to understand how health has been incorporated as a dimension in the existing water security frameworks. While supply–demand and governance narratives dominated several popular water security frameworks, studies that are specifically designed for public health purposes are generally lacking. This research aims to address this gap, firstly by assessing the multiple thematic dimensions of water security frameworks in scientific disclosure; and secondly by looking into the public health dimensions and evaluating their importance and integration in the existing water security frameworks. For this, a systematic review of the Scopus database was undertaken using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A detailed review analysis of 77 relevant papers was performed. The result shows that 11 distinct dimensions have been used to design the existing water security framework. Although public health aspects were mentioned in 51% of the papers, direct health impacts were considered only by 18%, and indirect health impacts or mediators were considered by 33% of the papers. Among direct health impacts, diarrhea is the most prevalent one considered for developing a water security framework. Among different indirect or mediating factors, poor accessibility and availability of water resources in terms of time and distance is a big determinant for causing mental illnesses, such as stress or anxiety, which are being considered when framing water security framework, particularly in developing nations. Water quantity is more of a common issue for both developed and developing countries, water quality and mismanagement of water supply-related infrastructure is the main concern for developing nations, which proved to be the biggest hurdle for achieving water security. It is also necessary to consider how people treat and consume the water available to them. The result of this study sheds light on existing gaps for different water security frameworks and provides policy-relevant guidelines for its betterment. Also, it stressed that a more wide and holistic approach must be considered when framing a water security framework to result in sustainable water management and human well-being.
Collapse
|
14
|
Preparation, Performances and Mechanisms of Co@AC Composite for Herbicide Atrazine Removal in Water. WATER 2021. [DOI: 10.3390/w13020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, a high-performance adsorbent Co@AC was prepared by loading cobalt ions (Co2+) on activated carbon (AC) via solution impregnation and high-temperature calcination technology, and was used to remove atrazine in water. The preparation factors on the adsorbent properties were studied, and the characteristics were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectrometer (FTIR). The results showed that Co@AC possessed the best performance when the factors were 7.0% of Co2+ (w/v), 7.0 h of immersing time, 500 °C of calcination temperature and 4.0 h of calcination time. The adsorption conditions and mechanisms for atrazine removal by Co@AC were also studied scientifically. As the conditions were pH 4.0, reaction time 90 min and temperature 25 °C, Co@AC had the largest adsorption capacity, which was 92.95 mg/g, and the maximum removal rate reached 94.79%. The correlation coefficient of the Freundlich isotherm was better than that of the Langmuir isotherm, and the adsorption process followed the pseudo-second-order kinetic model. Cycle experiments showed that the removal efficiency of atrazine by Co@AC remained above 85% after five repeated experiments, indicating that Co@AC showed a strong stable performance and is a promising material for pesticides removal.
Collapse
|