1
|
Yaqub M, Mee-Ngern L, Lee W. Cesium adsorption from an aqueous medium for environmental remediation: A comprehensive analysis of adsorbents, sources, factors, models, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175368. [PMID: 39122022 DOI: 10.1016/j.scitotenv.2024.175368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Considering the widespread and indispensable nature of nuclear energy for future power generation, there is a concurrent increase in the discharge of radioactive Cs into water streams. Recent studies have demonstrated that adsorption is crucial in removing Cs from wastewater for environmental remediation. However, the existing literature lacks comprehensive studies on various adsorption methods, the capacities or efficiencies of adsorbents, influencing factors, isotherm and kinetic models of the Cs adsorption process. A bibliometric and comprehensive analysis was conducted using 1179 publications from the Web of Science Core Collection spanning from 2014 to 2023. It reviews and summarizes current publication trends, active countries, adsorption methods, adsorption capacities or efficiencies of adsorbents, tested water sources, influencing factors, isotherm, and kinetic models of Cs adsorption. The selection of suitable adsorbents and operating parameters is identified as a crucial factor. Over the past decade, due to their notable capacity for Cs adsorption, considerable research has focused on novel adsorbents, such as Prussian blue, graphene oxide, hydrogel, and nanoadsorbents (NA). However, there remains a need for further development of application-oriented laboratory-scale experiments. Future research directions should encompass exploring adsorption mechanisms, developing new adsorbents or their combinations, practical applications of lab-scale studies, and recycling radioactive Cs from wastewater. Drawing upon this literature review, we present the most recent research patterns concerning adsorbents to remove Cs, outline potential avenues for future research, and delineate the obstacles hindering effective adsorption. This comprehensive bibliometric review provides valuable insights into prevalent research focal points and emerging trends, serving as a helpful resource for researchers and policymakers seeking to understand the dynamics of adsorbents for Cs removal from water.
Collapse
Affiliation(s)
- Muhammad Yaqub
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| | - Ladawan Mee-Ngern
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea.
| |
Collapse
|
2
|
Tang JH, Jia SQ, Liu JT, Yang L, Sun HY, Feng ML, Huang XY. "Ion-imprinting" strategy towards metal sulfide scavenger enables the highly selective capture of radiocesium. Nat Commun 2024; 15:4281. [PMID: 38769121 PMCID: PMC11106286 DOI: 10.1038/s41467-024-48565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Highly selective capture of radiocesium is an urgent need for environmental radioactive contamination remediation and spent fuel disposal. Herein, a strategy is proposed for construction of "inorganic ion-imprinted adsorbents" with ion recognition-separation capabilities, and a metal sulfide Cs2.33Ga2.33Sn1.67S8·H2O (FJSM-CGTS) with "imprinting effect" on Cs+ is prepared. We show that the K+ activation product of FJSM-CGTS, Cs0.51K1.82Ga2.33Sn1.67S8·H2O (FJMS-KCGTS), can reach adsorption equilibrium for Cs+ within 5 min, with a maximum adsorption capacity of 246.65 mg·g-1. FJMS-KCGTS overcomes the hindrance of Cs+ adsorption by competing ions and realizes highly selective capture of Cs+ in complex environments. It shows successful cleanup for actual 137Cs-liquid-wastes generated during industrial production with removal rates of over 99%. Ion-exchange column filled with FJMS-KCGTS can efficiently treat 540 mL Cs+-containing solutions (31.995 mg·L-1) and generates only 0.12 mL of solid waste, which enables waste solution volume reduction. Single-crystal structural analysis and density functional theory calculations are used to visualize the "ion-imprinting" process and confirm that the "imprinting effect" originates from the spatially confined effect of the framework. This work clearly reveals radiocesium capture mechanism and structure-function relationships that could inspire the development of efficient inorganic adsorbents for selective recognition and separation of key radionuclides.
Collapse
Affiliation(s)
- Jun-Hao Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | | | - Jia-Ting Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China
| | - Lu Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China
| | - Hai-Yan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China
| | - Mei-Ling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China.
- University of Chinese Academy of Sciences, 100049, Beijing, PR China.
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| |
Collapse
|
3
|
Raheem I, Mubarak NM, Karri RR, Solangi NH, Jatoi AS, Mazari SA, Khalid M, Tan YH, Koduru JR, Malafaia G. Rapid growth of MXene-based membranes for sustainable environmental pollution remediation. CHEMOSPHERE 2023; 311:137056. [PMID: 36332734 DOI: 10.1016/j.chemosphere.2022.137056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Water consumption has grown in recent years due to rising urbanization and industry. As a result, global water stocks are steadily depleting. As a result, it is critical to seek strategies for removing harmful elements from wastewater once it has been cleaned. In recent years, many studies have been conducted to develop new materials and innovative pathways for water purification and environmental remediation. Due to low energy consumption, low operating cost, and integrated facilities, membrane separation has gained significant attention as a potential technique for water treatment. In these directions, MXene which is the advanced 2D material has been explored and many applications were reported. However, research on MXene-based membranes is still in its early stages and reported applications are scatter. This review provides a broad overview of MXenes and their perspectives, including their synthesis, surface chemistry, interlayer tuning, membrane construction, and uses for water purification. Application of MXene based membrane for extracting pollutants such as heavy metals, organic contaminants, and radionuclides from the aqueous water bodies were briefly discussed. Furthermore, the performance of MXene-based separation membranes is compared to that of other nano-based membranes, and outcomes are very promising. In order to shed more light on the advancement of MXene-based membranes and their operational separation applications, significant advances in the fabrication of MXene-based membranes is also encapsulated. Finally, future prospects of MXene-based materials for diverse applications were discussed.
Collapse
Affiliation(s)
- Ijlal Raheem
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei, Darussalam.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei, Darussalam.
| | - Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Yie Hua Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil. Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
4
|
Shen X, Zhang Y, Mao Q, Huang Z, Yan T, Lin T, Chen W, Wang Y, Cai X, Liang Y. Peptide–Polymer Conjugates: A Promising Therapeutic Solution for Drug-Resistant Bacteria. INT J POLYM SCI 2022; 2022:1-18. [DOI: 10.1155/2022/7610951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
By 2050, it is estimated that 10 million people will die of drug-resistant bacterial infection caused by antibiotic abuse. Antimicrobial peptide (AMP) is widely used to prevent such circumstances, for the positively charged AMPs can kill drug-resistant bacteria by destroying negatively charged bacterial cell membrane, and has excellent antibacterial efficiency and low drug resistance. However, due to the defects in low in vivo stability, easy degradation, and certain cytotoxicity, its practical clinical application is limited. The emergence of peptide–polymer conjugates (PPC) helps AMPs overcome these shortcomings. By combining with functional polymers, the positive charge of AMPs is partially shielded, and its stability and water solubility are improved, so as to prolong the in vivo circulation time of AMPs and reduce its cytotoxicity. At the same time, the self-assembly ability of PPC enables it to assemble into different nanostructures to undertake specific antibacterial tasks. At present, PPC is mainly used in wound dressing, bone tissue repair, antibacterial coating of medical devices, nerve repair, tumor treatment, and oral health maintenance. In this study, we summarize the structure, synthesis methods, and the clinical applications of PPC, so as to present the current challenges and discuss the future prospects of antibacterial therapeutic materials.
Collapse
Affiliation(s)
- Xuqiu Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Tianyu Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wenchao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
5
|
Jiang Z, Liu G, Ma C, Guo Y, Duo J, Li M, Deng T. Cesium removal from wastewater: High-efficient and reusable adsorbent K 1.93Ti 0.22Sn 3S 6.43. CHEMOSPHERE 2022; 305:135406. [PMID: 35728662 DOI: 10.1016/j.chemosphere.2022.135406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Efficient and quick removal of radioactive Cs+ from wastewater is significant for the safe use of nuclear energy and human health. A novel adsorbent K1.93Ti0.22Sn3S6.43 (KTSS) was developed for Cs+ removal from complex natural water systems. The working mechanism of KTSS for removing Cs+ was the synergistic effect of ion exchange and the Cs⋯S binding, which was proved by several characterization techniques. KTSS showed ultrafast kinetics for Cs+ adsorption within 1 min with a removal rate of 99%. Meanwhile, KTSS exhibited a higher adsorption capacity of 450.12 mg/g than many other adsorbents to remove Cs+ and possessed excellent chemical stability in a wide pH range of 3-12. Thanks to the natural affinity arising from the S2- ligands, KTSS displayed excellent selectivity for Cs+ even in different complex water systems. The separation factors between Cs+ and the coexisting ions of Na+, K+, Mg2+, Ca2+ were ranged from 408.61 to 7448.20. Fortunately, by eluting with NaNO3 the adsorbent could realize the green regeneration and cyclic utilization. Furthermore, it was found that KTSS had tremendous advantages in the removal of Cs+ in comparison with the other adsorbents. Consequently, it should be considered that KTSS obtained in this study has great potential in applying ultrafast and high-efficient removal of Cs+ from wastewater.
Collapse
Affiliation(s)
- Zhenzhen Jiang
- Central Laboratory of Geological Mineral Exploration and Development Bureau of Tibet Autonomous Region, Tibet, 850033, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science at Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Gaoling Liu
- Central Laboratory of Geological Mineral Exploration and Development Bureau of Tibet Autonomous Region, Tibet, 850033, PR China
| | - Chi Ma
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science at Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yafei Guo
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science at Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Ji Duo
- Central Laboratory of Geological Mineral Exploration and Development Bureau of Tibet Autonomous Region, Tibet, 850033, PR China
| | - Mingli Li
- Central Laboratory of Geological Mineral Exploration and Development Bureau of Tibet Autonomous Region, Tibet, 850033, PR China.
| | - Tianlong Deng
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science at Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| |
Collapse
|
6
|
Fabrication and performance of the ammonium molybdophosphate/polysulfone mixed matrix membranes for rubidium adsorption in aqueous solution. J Appl Polym Sci 2022. [DOI: 10.1002/app.51798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Yu S, Tang H, Zhang D, Wang S, Qiu M, Song G, Fu D, Hu B, Wang X. MXenes as emerging nanomaterials in water purification and environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152280. [PMID: 34896484 DOI: 10.1016/j.scitotenv.2021.152280] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 05/21/2023]
Abstract
Environmental pollution has accelerated and intensified because of the acceleration of industrialization, therefore fabricating excellent materials to remove hazardous pollutants has become inevitable. MXenes as emerging transition metal nitrides, carbides or carbonitrides with high conductivity, hydrophilicity, excellent structural stability, and versatile surface chemistry, become ideal candidates for water purification and environmental remediation. Particularly, MXenes reveal excellent sorption capability and efficient reduction performance for various contaminants of wastewater. In this regard, a comprehensive understanding of the removal behaviors of MXene-based nanomaterials is necessary to explain how they remove various pollutants in water. The eliminate process of MXene-based nanomaterials is collectively influenced by the physicochemical properties of the materials themselves and the chemical properties of different contaminants. Therefore, in this review paper, the synthesis strategies and properties of MXene-based nanomaterials are briefly introduced. Then, the chemical properties, removal behaviors and interaction mechanisms of heavy metal ions, radionuclides, and organic pollutants by MXene-based nanomaterials are highlighted. The overview also emphasizes associated toxicity, secondary contamination, the challenges, and prospects of the MXene-based nanomaterials in the applications of water treatment. This review can supply valuable ideas for fabricating versatile MXene nanomaterials in eliminating water pollution.
Collapse
Affiliation(s)
- Shujun Yu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Hao Tang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Di Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Shuqin Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Dong Fu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
8
|
Dong Z, Wang Y, Wen D, Peng J, Zhao L, Zhai M. Recent progress in environmental applications of functional adsorbent prepared by radiation techniques: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:126887. [PMID: 34763925 DOI: 10.1016/j.jhazmat.2021.126887] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Environmental pollution has been accelerated due to fast urbanization and industrialization, and thus hazardous contaminants removal and valuable metal recovery have become urgent. Adsorption has become a promising technology for water treatment because of its advantages of low-cost, good reusability, low energy consumption, high capacity and high selectivity. Particularly, radiation techniques including radiation induced graft copolymerization and radiation crosslinking have been found to be widely utilized to exploit adsorbents for water treatment. In this review, the current status and progress of adsorbents in environmental pollution in the past decade are summarized, including adsorbents (in form of particles, fiber and fabric, membrane, novel nanomaterials) synthesized by radiation induced graft copolymerization and hydrogel-based adsorbents fabricated by radiation crosslinking. Finally, further perspective on the development and challenge of adsorbents by radiation techniques is also suggested.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yue Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Di Wen
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Jing Peng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China.
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Tang JH, Jin JC, Li WA, Zeng X, Ma W, Li JL, Lv TT, Peng YC, Feng ML, Huang XY. Highly selective cesium(I) capture under acidic conditions by a layered sulfide. Nat Commun 2022; 13:658. [PMID: 35115493 PMCID: PMC8813942 DOI: 10.1038/s41467-022-28217-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
Radiocesium remediation is desirable for ecological protection, human health and sustainable development of nuclear energy. Effective capture of Cs+ from acidic solutions is still challenging, mainly due to the low stability of the adsorbing materials and the competitive adsorption of protons. Herein, the rapid and highly selective capture of Cs+ from strongly acidic solutions is achieved by a robust K+-directed layered metal sulfide KInSnS4 (InSnS-1) that exhibits excellent acid and radiation resistance. InSnS-1 possesses high adsorption capacity for Cs+ and can serve as the stationary phase in ion exchange columns to effectively remove Cs+ from neutral and acidic solutions. The adsorption of Cs+ and H3O+ is monitored by single-crystal structure analysis, and thus the underlying mechanism of selective Cs+ capture from acidic solutions is elucidated at the molecular level.
Collapse
Affiliation(s)
- Jun-Hao Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian-Ce Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei-An Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xi Zeng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ji-Long Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Tian-Tian Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Ying-Chen Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mei-Ling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
DeVol TA, Pujari AB, Locklair J, Husson SM, Bliznyuk VN, Seliman AF. Hybrid extractive scintillator resin for simultaneous concentration and detection of radiocesium from aqueous solutions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 237:106720. [PMID: 34454249 DOI: 10.1016/j.jenvrad.2021.106720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
A hybrid extractive scintillating resin (HESR) was developed for the concentration and detection of radiocesium. The HESR comprised a cesium-selective potassium ferrierite ion-exchange powder embedded in porous polymeric scintillating beads. It was prepared by carrying out suspension polymerization of 4-methylstyrene with divinylbenzene, 2-(1-naphthyl)-4-vinyl-5-phenyloxazole fluor and ferrierite-K powder. A translucent column packed with the HESR was placed in a commercial flow-cell radiation detector for real-time detection of radiocesium. Measurements using the HESR detection system were compared with an on-line gamma-ray measurement using a NaI:Tl well detector containing a column of ferrierite-K powder/SiO2 or potassium-nickel ferrocyanate-polyacrylonitrile (KNiFC-PAN). The NaI:Tl well detector configuration quantified the gamma-ray from 137mBa, while the flow-cell detector primarily quantified the beta particles and conversion electrons of 137Cs. The minimum detectable concentration of the two detection modalities were calculated and shown to be lower than the maximum contaminant level in drinking water of 7.4 Bq/L (200 pCi/L).
Collapse
Affiliation(s)
- T A DeVol
- Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA; Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management Center (NEESRWM), Clemson University, Clemson, SC, 29634, USA.
| | - A B Pujari
- Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA; Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management Center (NEESRWM), Clemson University, Clemson, SC, 29634, USA
| | - J Locklair
- Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA; Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management Center (NEESRWM), Clemson University, Clemson, SC, 29634, USA
| | - S M Husson
- Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634, USA; Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management Center (NEESRWM), Clemson University, Clemson, SC, 29634, USA
| | - V N Bliznyuk
- Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA; Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management Center (NEESRWM), Clemson University, Clemson, SC, 29634, USA
| | - A F Seliman
- Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA; Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management Center (NEESRWM), Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|